2 USA >
%, i

&\0
NisTRP

Technical Methods to
Ease Migration from
Hyperion Interactive
Reports

December 11, 2018, ADAL Sprint 187

Office of Systems

Advanced Data Analytics Lab

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 1

Table of Contents

1. OVEIVIEW euvunrrienrrireerseenesseserssesssssssssssssssssssssssssssanses 3

Background OO

Easing the MIGIAtIONcucuiiieiiiiiiiciiiite s

II. Analysis — Creating the Data..........eeevveeeeeiinnnnnnns 4

Components of an Enterprise Report SOIUION ..o
The EPM Database ..ot
How many documents do yOu NAVEP ...
Section information for each dOCUMENL ...
SeCtiON DIEPENUCIICY ...t
Data Model SECtion TYPE.....cuiuiiiiiiiiiiiiiiissisi s
Data Model Section Types with Meta TOPIc Tables ...
QUETY SECHON TYPE.uuiuiiiiiiiiiiiiiiiiii it
Results SECON TYPE couvuuiuiiiiiiiiiiii s
IMPOLt SECHON TTPE ot
TAble SECHON TYPEC..vuiiiiiiiiiciiiiiciii bbb
Tdentifying DATASOULCESuvuivuiiiiiiiiicicc et
ReEStIUL WED SEIVICES couvuiiiiiiiiiiiici i ss s

Converting Query Section Type to WebBIOCUSccviiininiiic s

1. SMILE - Visualizing the migration metadata 28

IV. Resource Savings.......ccccceeeeeeeiiiesinnnnneeeeeeieiisennnnns 31

AZ O3 s Tol 15 53 10 o BRI 31

VL AppendiX......eeeeeiiiiiiiniinieeeeinninniinieeeeeeeeseennnnns 31
APPendix A — EPM TaDIES ..o
Appendix B — Code to Create DocumentContent and populate with section datac.cceveevenereinceneererrennennns
Appendix C — Python Script to upload file to WebFocus using Restful Web APT.......cccooocviiviiiniiiiiiiiicicn.

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018

............... 5

Federal agencies can make use of relational database technology, scripting languages such as Python, and restful web

services to ease the burden of report migration from one enterprise solution to another.

Overview

Background

Besides the programmatic applications that power the core mission, enterprise-reporting applications are important to

provide management information that federal agencies need to
make informed decisions when planning goals, workloads, and
resources. When one thinks of enterprise report offerings, the
vendors that most commonly come to mind are Crystal Reports,
Tableau, WebFocus, and Hyperion. The enterprise report
landscape has changed key players and solutions quite a

bit. Agencies face challenges with migrating from one enterprise
report solution to another. There are different reasons an agency
must migrate to different solution and it can be because a vendor has decided to discontinue support or the agency has

decided that a different product is more in line with its needs.

The Social Security Administration (SSA), over the past decade used Hyperion’s Enterprise Performance Management
(EPM) System for some its Management Information and Reporting needs. The EPM product had an interesting
lifecycle over the last twenty years. It originated from a company called Brio Software who called the product Brioquery.
Hyperion purchased Brioquery and rebranded the product as such. Oracle then purchased Hyperion in 2007 and
supported the product for over a decade. Oracle has now decided to sunset the product to focus on its other business

intelligence solutions.

SSA has over fifty thousand reports housed in EPM. Employees have labeled over three thousand reports as critical
reports that must be migrated. With the evolving technical landscape concerning big data and cloud computing, SSA is

moving to a mixture of products to support its management information needs.

Easing the Migration

The primary goal is to sunset the EPM solution. EPM customers that
have any report that they need to continue to use must be migrated to
another solution. When one is considering that thousands of reports
are involved, this is a considerable workload to recreate each of these

reports manually.

The Advanced Data Analytics Lab (ADAL) is a small team of Data
Scientists, Developers, and Analysts that provide a variety of analytic
and ‘technology proof of concept’ support within SSA. Outlined in
this paper are technical methods as recommended by ADAL that SSA

and federal agencies can use to leverage scripts and restful web

services to help track and ease the administrative and development overhead of the migration process.

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 3

Analysis — Creating the Data

Components of an Enterprise Report Solution

Enterprise Report Solutions provide a framework for customers that typically consist of the following features, which

enable one to:

e Create data connections to a variety of data sources, which can include databases, spreadsheets, or text files.

e View, retrieve, manipulate, filter, and sort the data.

Display the data in a variety of ways in reports, tables, pivots, dashboards, or graphical views.

Share reports and content with other users.

e Export the data to variety of formats including pdf or spreadsheets.

Control who has access to the each of the features, reports, and content.

In order to provide this framework, most Enterprise Report Solution have the following components:

Database to track details about the reports, data content, users, and user privileges.

e Web front end or desktop client application for users to access, create, edit and share reports.
e Web or other front end for administrators to maintain solution and grant user privileges.
e Restful web services or application programming interfaces (APIs) to enable administrators to perform

maintenance activities on bulk set of objects such as moving reports from one virtual folder to another,

uploading new content, or archiving outdated content.

EPM consists of a database, web front end, web administration tools and restful web services to provide the enterprise
report features and this is true of other well-known enterprise report solutions such as WebFocus, Tableau, and SQL
Server Reporting Services (SSRS). If you have access to the database, you can theoretically reconstruct much of the
folder information, list of reports, and some of the content. Afterwards, you can pair this process with the restful web

service APIs of the target solution to migrate the content.

When exploring and leveraging the solution database, it is best to work with a copy of the database and not the live one
as you could unintentionally break the application if you change any data. Vendors usually prefer that customers leverage
their technical staff for database related work through consulting or support hours. I worked with a snapshot of the

database and not the live production database for this effort.

You can download a document on the database model from Oracle’s Support Site at

https://docs.oracle.com/cd/FE40248 01/epm.1112/epm data models.zip. This link downloads a zipped file that

contains several documents on the suite of Hyperion Products. The file pertinent to this analysis is the
ReportingandAnalysis.pdf. The document provides a list of all the tables, columns, primary keys, foreign keys and what
those keys link to which is helpful. It does not contain descriptions of the tables or columns so we really had to put on

our investigative hats on and do quite a bit of data exploration to make sense of the database structure.

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 4

Fortunately, there is comprehensive documentation for the Restful Web Services Application programming interface
APIs. Vendors provide these services to support administrative and developer needs and encourage their use. They also

provide documentation, code samples, and training to customers.

The EPM Database

I have already cautioned you about using care when working with the database so be sure to work with a copy and not
the live database. Office of Systems houses the production database on an Oracle server. I ported much of the data to a
SQL Server database. One could use another Oracle Database, a MySQL database or even a NoSQL database if
preferred. I picked SQL Server 2017 because of the string functions that made it much easier for to reconstruct the
report content and reduced the amount of code I had to write. I will point out the portions of code that leverage those

new functions where applicable.

The EPM database has hundreds of tables. I extensively reviewed the tables and narrowed down the list of the most
critical tables to this effort to fifty-five tables as shown in Appendix A. In EPM, you refer to all reports as documents.
Fach document contains one or more sections. The sections can be data models, queries, results, reports, pivots, charts,
or dashboards. Sections can also be dependent on each other. For instance, one query may derive from another query,

which may derive from a data model.

How many documents do you have?

The V8_CONTAINER table appears to be a master table within the database for all objects including but not limited
to folders, documents, and open catalog extension (OCEs). OCEs are the objects that define the data source and
connection information. Other enterprise report solutions use the term data source, data adaptor, or database
connection instead of OCE. The CONTAINER_UUID is the primary key for this table and contains the unique
identifier for each object. The CONTAINER_UUID column connects to the foreign key UUID column in V§_OCE
and V8_CONT_VERSION tables.

The V8_CONT_VERSION table uses both the CONTAINER_UUID and VERSION_NUMBER columns as a
primary key and these columns are used together to connect to the matching foreign key columns in the
V8_H_DOCUMENT, V8_QRY_DB_CONN, V8_BQ_SECTION, and V8_FOLDER tables. These tables are

important tables that contain information about objects, data connections and virtual folders.

Let us take a deeper look at how document information is stored and how we can identify the document sections and
content. The table V8_H_DOCUMENT contains a row for every document as shown in the image below. The
V8_CONTAINER table will also have a row for every document but the V8_CONTAINER table contains unique rows
for other objects such as folders and OCE rows in addition to documents. The V§_H_DOCUMENT only contains

rows for all documents, not any other objects.

PATH DOCUMENT TIME_HAR.. UUID
62304 | /Bl Training/Basic/Solutions Basic_Topic 05 Ex 1.bay 20181027 0000013316dac74e-0000-8792-2c1206%
1360673 /Bl Training/Basic/Solutions Basic_Topic 05 Ex 2bay 20181027 0000013316dacabb-0000-8792-2c1206%
/Bl Training/Basic/Solutions ~ Basic_Topic 05 Ex 3bay 20181027 0000013316dacbd2-0000-8792-ac 12063
/Bl Training/Basic/Solutions Basic_Topic 05 Ex 4 bqy 2018-10-27 0000013316dacd0b-0000-8792-ac 12069

/Bl Training/Basic/Solutions Basic_Topic 05 Ex 5 finished bqy 2018-10-27 0000013316dace 72-0000-8792-ac 12065

The DOCUMENT_ID column is the primary key column and uniquely identifies each document in the
V8_H_DOCUMENT table. To get a count of how many documents we have I can run the query below which returns
in this case, 57,665 rows.

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 5

SELECT count(*) from V8_H _DOCUMENT

This does not account for test or old data that does not need to be migrated. If you only need to worry about certain
folders, it is possible to look at documents within specific folders. For instance, if I want look at documents in the
directory ‘BI Training/Basic/Solutions’, I can run the following query:

select Document_ID, PATH, DOCUMENT, TIME_HARVESTED, UUID from V8_H_DOCUMENT
where path = '/BI Training/Basic/Solutions'
order by Document

This returned fourteen rows. Here is an excerpt of the first nine of those fourteen rows:

Documert_ID PATH DOCUMENT TIME_HARVESTED LUUD

1 [1362304 | /Bl Trng/Basic/Scksiors Bamc_Topic 05 Ex 1bay 20181027 000001 3316dae 7de-D000-8752-52 12063
2 1360673 /BI Traning/Basic/Schtions Basic_Topke 05 Ex 2bay 20181027 (0000133 16dacabb-0000-8752 02 12063
3 1360837 /Bl Traning/Basc/Soksions Basic_Topic 05 Ex 3bay 20181027 00000133 16dacbd2.0000-8732-0c 12069
& 18162 /81 Trairing/Basic/Soktions Basic_Topic 05 Ex 4 bay 20181027 (000013316dacdlb-0000-8792-ac 120698
5 1360707 /81 Training/Basc/Schtions Basic_Topkc 05 Ex 5 finshed bay 20181027 0000013316dace 72-0000-8732-5c 12063
6 136279 /Bl Traning/Basic/Schtions Basic_Topic 05 Ex Sbay 2018-10-27 00000133 16daci 8-0000-8792-2¢ 12065
7 1359748 /B! Training/Basic/Schions Basic_Topic 05 Ex 7bay 20181027 000001 3316dad076-0000-8732-02 120630
8 1359646 Bl Traning/Basc/Schtions Basc_Topee 06 bay 20181027 0000013316dad 1 7-0000-8752 2¢ 1206%
3 1361629 /B! Training/Basic/Schtions Basic_Topic 07 Prvots & Chants 20181027 00000133 16d2d392.0000-8732-2c 120630

You can see from the results that for the first row, we have document with a DOCUMENT_ID of 1362304 and it has a
name of ‘Basic_Topic 05 EX 1.bqy’, is located in the virtual folder called ‘Solutions’ and can be found by navigating
through the page ‘BI Training/Basic/Solutions”. It was last run on 10-27-2018.

The V8_H_DOCUMENT table is a great starting point to figuring out how many documents you have. Of course, you
may also want to figure out who owns the document so that you can reach out to them. To get details on who owns the
document and its creation date, you need use both the V8§_CONTAINER and the V8_H_DOCUMENT tables.
Therefore, we can build onto our first query to get the owner and creation date info:

select d Document ID, d PATH, d DOCUMENT, d TIME_HARVESTED, d UUID,
c.CREATION_DATE, c OWNER_LOGIN

from V8_H_DOCUMENT d

inner join [V8_CONTAINER] ¢ on d UUID = c.CONTAINER UUID

where path = '/BI Training/Basic/Solutions'

order by Document

The results with two additional columns of CREATION_DATE and OWNER_LOGIN (redacted):

Documert_ID PATH DOCUMENT TIME_HAR. LUID CREATION_DATE OWNER_LOGIN
1 [1362308 | /B Trarwng Basc/Schsons Basc_Tope: 05 Bx 1 bay 2181027 0000013316dac 4o 00008750 0c1206% 2011-10:18 (b) (6)
2 1e0Em Bl Trarwng/Basc/Schsions Basc_Topee 05 Ex 2bay 20181027 0000011316dacaf-000087500c1206% 20111018

3 1380937 /81 Trawwng Basc/Scksons Basc_Tope 05 Ex Jbay 2181027 0000013316dache2 00008750 0c 12065 20111018

¢ 1%ne /B Training Basc/Sckeons Basc_Topic 05 Ex 4 bay 20181027 0000011316dacdlb-0000 8752 ec 12065 20111018

5 18007 Bl Trarwng /Banc Schtors Basc_Tope 05 Ex 3 firvshed by 20181027 00000131 16dece 72000087 R ec 12063 20111018

& 1% /B Trarg/Baee/Schone Base_Tope: 05 Ex 6 bay 2181027 0000013316daciib0000-87500c 12065 20111018

7 13sss /B Trawrang /Bosc/Scksiors Base:_Topec 05 Ex Thay 20181007 0000013316dad076- 00068790 0c 12080 20111018

8 1359646 B Trorwg Basc/Scksons Base_Tope 06 bay 20181027 0000013016dsd 1 #0000 8790 6c 1206% 2011-10-18

$ 1% Bl Tnno/Basc/Schors Basc Tooe 07Pwets SChats 20181027 000001131660¢382000087529c1206% 2011-10-18

The OWNER_LOGIN is the network account of the user who logged into EPM and created the document.

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 6

Section information for each document

It is straightforward from here to figure out what sections each document contains. To do this, we join the
V8_H_DOCUMENT to the V8_H_SECTION and V8_H_SECTION_DETP tables. The V8_H_SECTION table
contains a unique row for each section and uses the SECTION_ID field as the primary key for each section.

To look at all the sections for the Document with a DOCUMENT _ID of 1362304, we would use the following query:

select d Document_ID, d. [PATH], d DOCUMENT, d TIME_HARVESTED, d UUID,
s SECTION_ID, s SECTION_NAME, cs [NAME] as SectionType

from V8_H_DOCUMENT d

inner join [V8_H_SECTION] s on d DOCUMENT_ID = s DOCUMENT_ID

inner join [V8_H_CONSTANT] cs on cs ID = s SECTION_TYPE_ID

where d DOCUMENT_ID = 1362304

There are different section types so I also joined V8_H_SECTION to the V8_H_CONSTANT table, which serves as a

reference table for those values. The results:
[E Reatts gl Massage

Documers_ID PATH DOCUMENT TIME_HARVESTED \AiD SECTION_ID SECTION_NAME SectonType
1 1363308 | /8 Trwng/Bamc/Sokstons Basc_Topic D5 Ex 1hgy 20181027 0000013316cac Tae 000875000 12063 79034016 DataModel DataMocel
2 162%4 /B Trenng/Basc/Soktons Basc_Topic DS Ex 1hay 20181037 000001 3316dac T 0008790 0c 120650 7S0M4026 Qe Guery
1 16234 /8l Traring /Bamc/Schsions Basic_Topic D5 Ex 1hay 20181027 0000013316cac Tae 00087509 12065 75004028 Remidts fena

The results show that Document 1362304 has three sections, a Data Model, Query, and Results.

We already know we have 57,665 documents. Now we know that each document consists of sections. The sections
contain the logic to determine what data to use and the data display instructions. Let us see how many section types we

have and how many of each type we have for all of our documents.

--count all sections for each document

select s SECTION_TYPE_ID,

cNAME as SectionType, count(*) as noSec

from [V8_H_DOCUMENT] d

inner join [V8_H_SECTION] s on d DOCUMENT_ID = s DOCUMENT_ID
inner join [V8_H_CONSTANT] c on s SECTION_TYPE_ID = cID

group by s SECTION_TYPE_ID, c NAME

SECTION_TYPE_ID SectionType noSec
1 Unknown 5
2 Dashboard 56605
3 Chart 20880
4 DataModel 248809
5 Import 6703
6 MDDQuery 1
7 Pivot 251889
8 Query 258096
9 Report 97820
10 Result 255522
11 Table 104646

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 7

So 57,665 documents may not seem to be an astronomical number but when you look at the section counts, the

numbers get bigger. There are 248,809 data model and 258,096 query sections, which hint at the effort needed to
migrate that content.

This count includes test and development content that may not need to be migrated so let us be conservative and
estimate that for the data model sections, we are only going to migrate twenty percent. That is still 49,762 data model
sections. If you consider it might take an analyst four to eight hours for each section at a labor cost of $80 per hour.
That is a range of 199,048 to 398,096 hours at a cost of $15,923,840 to $31,847,680 for just the data model section.

Section Dependency

It is helpful to know if any sections are dependent on data of another section. When you first create a document in
EPM, you associate it with an OCE and then one or more data models. EPM saves those database models as sections
for each document. Then within EPM, you can add additional sections such as queries, results, reports, charts and
dashboards that pull from those data models. You can nest the dependency for these sections as needed. For example,
you could have one query section pull from a data model and then a second query section could use the data from the
first query. Below I am tracing the dependency of document sections for document 1362304 using the following query:

select d Document_ID, d DOCUMENT, s SECTION_ID, s SECTION_NAME,
cs [NAME] as SectionType, s2SECTION_ID as ParentSect,
s2 SECTION_NAME as ParentSectName
from V8_H_DOCUMENT d
inner join [V8_H_SECTION] s on d DOCUMENT _ID = s DOCUMENT _ID
inner join [V8_H_CONSTANT] cs on cs ID = s SECTION_TYPE_ID
left outer join [V8_H_SECTION_DEP] sd on s SECTION_ID = sd [CHILD_SECTION_ID]
left outer join [V8_H_SECTION] s2 on sd PARENT_SECTION_ID = s2 SECTION_ID
where d DOCUMENT_ID = 1362304
order by s SECTION_ID asc

The results from this query:
Document_ID DOCUMENT SECTION_ID SECTION_NAME SectionType ParentSect ParentSectName
1 [1362304 | Basc_Topic05Ex1bay 75034016 DataModel DataModel NULL NULL
1362304 Basc_TopcOSEx1bay 75034026 Query Query 75034016 DataModel
3 1362304 Basc_Topic 0SEx Thay 75034028 Resuls Resut 75034026 Query

You can see that the Data Model is the parent section for the Query and the Query is the parent section for Result.

Now to tackle the content for each section. The goal here is to see if we can recreate the SQL queries to replicate the
output of the sections so that we can take those queries and use them in another reporting tool to replace EPM. To do
this, we will focus on the individual sections and start with identifying the tables, columns, filters, sort fields and
computed items that EPM uses in each section to produce the output. EPM stores information on the tables, columns,
rows, and other pertinent section information in groups of tables specific to each group. For instance, for the data
model sections, the EPM stores the data model section in the following tables:

V8_H_DM_COLUMN
V8_H_DM_DIGEST
V8_H_DM_JOIN

V8_H DM _LEAF COL
V8_H_DM_LIMIT COL

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 8

V8_H_DM_META_DEP
V8_H_DM_SECTION
V8_H_DM_TABLE

EPM stores data about the query sections in:

V8_H_QRY_COLUMN
V8_H_QRY_DM REF
V8_H_QRY_QUERY
V8_H_QRYCOL_DMCOL
V8_H_QRYCOL_RSCOL

EPM stores the results section in:

V8_H_RS_COLUMN
V8 _H_RS_COMP_ITEM
V8_H_RS_LIMIT COL

Data Model Section Type

In EPM, the data model tables are the tables that make available the list of columns for users to select from when
building queries, results, and other sections. In EPM, when you review the document, you will see the individual
sections show up in the sections pane on the left except for the data model sections. The data model exists as the list of
elements that you can select to use in queries. If you have more than one data model, you will see that different sections
are in groups associated with the different data models. When you select a query, the applicable fields for the data model
show up in that group. The image below is a screenshot that illustrates this.

One Data Model Two Data Models
Guery » MAQuery 3 Arca =
sec ooy x 2 [SUMClam Count) Swe e ® | T Fign N | Avwa Nen | DEPN
SUTTEN |7 | smcimed A query | " | exiaciovemn
W Resuits Fibet q Fegran Name AN "’_L_ Fitur ~0| Hgn Nm|
Son ':w Reguestdom || %an l CSPN_TPOESC «|
Y A emand |
1 4 SSIPT Monthly FO
Month Start Date
Fhements Month End Date Rewoate |
B Topes Month Narne “ dsbex - DSEN_DM -
+ # 5SPT Montrly FO Weeks In Morch 1 1SN SYS NN

Notice how Query 2- Area falls below the black line indicating it uses a different model. Because in EPM, the data
models serve as a source to select fields from other sections, you may or may not need to recreate them. It depends on
the reporting tool and if you need to stage data for users to access as a starting point so that they have a controlled group
of data to select for reports.

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 9

There are two categories of data models in EPM, which are Tables and Topics. If a data model pulls data directly from a
data source it falls in the Table category. If it derives from an internal EPM view of data from other data models, it falls
in the Topics category. Data models that fall in the Tables category are easier to recreate and I will focus on that first.

Data Model — Table Category

To recreate a SQL query for a data model, you use the V8_H_DM_Table and V§_H_DM_COLUMN to identify the
tables and columns used by each section. A warning though, the columns and tables listed in these tables may have
friendly names or alias that include spaces or other characters. Column and table names in a physical database should
not have spaces or columns and in the circumstances where they do, you have to include square brackets around the
name or the SQL query will not execute. Later you will see in some of the recreation scripts, that I add brackets to the
table and column names to mitigate this issue where I am able. The actual physical table and column names are stored
in the V8_H_DB_Table and V_H_DB_Column tables. You can join the data model table to the physical tables through
the foreign key columns RDBMS_TABLE_ID and RDBMS_COLUMN_ID.

I have a sample document that I am going to work with to trace the data model. My document is called SSIPT Simple
Query 1 and is located in the virtual EPM folder of '/BI Central Office Folders/DCBFM/DCBFM
FPA/Development/migrationScript_test'. Here is what you see when you look at this document in the EPM client

application:
A Query v
Sections X | | Request | Rgn Nm| DSPN_TPDESC| Ompt Cim Cnt
J Filter i|| Rgn Nm
A Results
——— || son | DSPN_TPDESC »
If m | @ Rptofc Mv ||
Tm Sys Num v Ofc Sys Num
@ DSPN_DM Ofc Sys Num Ocd
DSPN_SYS_NUM Dspn Sys Num Alt Id Cd
DSPN_TYP Toc Sys Num Ofc Nm
DSPN_TPDESC App Pgm Bnft Sys Num Ofc Typ
DISB_DCN_CD Ompt Day Range Sys Num Ofc Typ Txt
DISB_DCN_CDESC Fo Day Range Sys Num Docfl Ofc Typ
EFF_STDT Wkid Cmpldt Docfl Ofc Typ Txt
Elements EFF_ENDT Strct Typ Cd Rptd Ocd
@ 8% Tables ~ | VLD_SW WKkid Grp Cd Rptd Ofc Nm
R Tables SRC_APP_CD Ompt Cim Cnt Rptd Adocd
INSRT_DT Ompt Days Rptd Docfl Ofc Typ
LU_TS Ompt Excld CIm Cnt Rptd Docfl Ofc Txt
Pftm Cim Cnt Rptd HIvl Grpg Cd
Pftm Davs . Rptd Hivl Grpg Nm
@ DAYRANGE_DM |5
DAY_RANGE_SYS_NUM ’
DAY_RANGE_TYP

Within the database, we need to figure out what the document id is and we can do that with the following query.

--retrieve document id for sample document

select * from [V8_H_DOCUMENT] d

where path = '/BI Central Office Folders/DCBFM/DCBFM FPA /Development/migrationScript_test'

and d DOCUMENT = 'SSIPT Simple Query 1'
DOCUMENT_ID TIME_HARV.. UUID VERSION PATH

[1409716 120181101 00000166883c... 1

PARENT_FOLDER DOCUMENT
/Bl Central Office Folders... migrationScript_test SSIPT Simple Query

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 10

The output shows a document ID of 1409716. Now I need to see the list of sections and get the applicable section_id
for the data model.

select d DOCUMENT _ID, d DOCUMENT, s SECTION_ID, s SECTION_NAME, s SECTION_TYPE_ID,
cNAME as SectionType

from [V8_H_DOCUMENT] d

inner join [V8_H_SECTION] s on d DOCUMENT _ID = s DOCUMENT_ID

inner join [V8_H_CONSTANT] c on s SECTION_TYPE_ID = cID

where d DOCUMENT_ID = 1409716

DOCUMENT_ID DOCUMENT SECTION_ID SECTION_NAME SECTION_TYPE_ID SectionType

1409716 | SSIPT Smple Query 1 77748808 DataModel 4 DataMode!

1409716 SSIPT Simple Query 1 77748813 Query 8 Query
1409716 SSIPT Simple Query 1 77748815 Resutts 10 Resut

This shows that there is one data model that I can identify with a SECTION_ID of 77748808. That is all I need to run
a query to get the tables and columns for this data model.

—-This query returns the display fields and their respective tables in the data model

select distinct s SECTION_ID, dbt RDBMS_TABLE_NAME, dmcl DEFINITION, dbcl RDBMS_COLUMN_NAME
from [V8_H_DOCUMENT] d

inner join [V8_H_SECTION] s on d document_id = s document_id

inner join [V8_H_DM_TABLE] dmt on s SECTION_ID = dmt SECTION_ID

inner join [V8_H_DB_TABLE] dbt on dmt RDBMS_TABLE_ID = dbt RDBMS_TABLE_ID

inner join [V8_H_DM_COLUMN] dmcl on dmtDM _TABLE_ID =dmcl DM_TABLE_ID

inner join [V8_H_DB_COLUMN] dbcl on dmcl RDBMS_COLUMN_ID = dbc1 RDBMS_COLUMN_ID

where SECTION_TYPE_ID = 4 and s section_id = 77748808

Part of the output:

SECTION_ID RODBMS_TABLE_NAME RDBMS_COLUMN_NAME

7748808 | rPTOFC_MV OFC_TYP

77748808 RPTOFC_MV RPT_TO_OFC_NM
77748808 DSPN_DM DSPN_SYS_NUM
77748808 MTHLFOPT_SUM CLRD_TMLY_CNT
77748808 RPTOEC_MV ADOCD

77748808 RPTOFC_MV OFC_CLOS_DT
TTTARRNR MTHI FNPT SiLiIM BVSNOTM i M CNT

Next, I am going to build on this query to individually return the display columns, tables, table joins, and filters and then
format each of those results by rolling them up to one row for each data model section. The image shows seven column
names for section_id 77748808.

The typical format of a SQL Query is ‘SELECT <tablel.columnl, tablel.column2 > FROM <tablel, table2>
WHERE <tablel.coll = table2.coll> AND <coll = filter value>.” The columns shown in the image above are the
columns I need to use in the SELECT statement. If I take the first two columns, here is how I need them to appear
when part of a SELECT statement: ‘SELECT RPTOFC_MV.OFC_TYP, RPTOFC_MV.RPT_TO_OFC_NM FROM
RPTOFC_MV.’ To achieve this, I need to prefix each column with the table name followed by a period, add a comma
to the end and roll all of the columns for each section to one row. As I mentioned earlier, SQL 2017 has string
functions that make it possible for me to do this.

I use the SQL Server 2017 CONCAT and STRING_AGG functions. The CONCAT function combines fields together
into one column with additional characters as needed. The STRING AGG function rolls the combined columns into
one big column for each section, and separates each of the combined columns within that section with a comma. The

STRING_AGG knows to groups all of this by section because I specified SECTION_ID in the GROUP BY parameter.

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 11

If I did not specify a ‘GROUP BY SECTION_ID’, it would actually merge all of the results for all sections into one

IowW.

Data Models usually have many display fields and if you look at the output, it matches the fields the users can potentially
select from to build their queries.

--Data model display fields --format for query

select x1 section_id,

string agg(cast(concat('[x1 RDBMS_TABLE_NAME][x1 RDBMS_COLUMN_NAME)") as varchar(max)), ', ") as
DisplayFields

from (

select distinct s SECTION_ID, dbt RDBMS_TABLE_NAME, dbcl RDBMS_COLUMN_NAME

from [V8_H_DOCUMENT] d

inner join [V8_H_SECTION] s on d document_id = s document_id

inner join [V8_H_DM_TABLE] dmt on s SECTION_ID = dmt SECTION_ID

inner join [V8_H_DB_TABLE] dbt on dmt RDBMS_TABLE_ID = dbt RDBMS_TABLE_ID

inner join [V8_H_DM_COLUMN] dmcl on dmtDM _TABLE_ID =dmcl DM_TABLE_ID

inner join [V8_H_DB_COLUMN] dbcl on dmcl RDBMS_COLUMN_ID = dbcl RDBMS_COLUMN_ID

where SECTION_TYPE_ID = 4 and s section_id = 77748808

) as x1

group by x1 SECTION_ID

section_d DisplayFelds

77748808 | MTHLFOPT_SUM] ICLRD_TMLY_CNT). [MTHLFOPT_SUM] [PFTM_CLM_CNT). [RFTORC_MV] [RPT_TO_OCD], [MTHLFOPT_SUM] [CLRD_EXCLO_CNT]. M

Text View of results:

[MTHLFOPT _SUM].[CLRD_TMLY_CNT], [MTHLFOPT SUM].[PFTM_CLM_CNT],
[RPTOFC_MV].[RPT_TO_OCD], [MTHLFOPT_SUM].[CLRD_EXCLD_CNT],
[MTHLFOPT_SUMJ.[DSPN_SYS_NUM], [MTHLFOPT_SUM].[LU_TS],

[MTHLFOPT _SUMJ.[TRNSTTM_1_CLM_CNT], [MTHLFOPT_SUM].[TRNSTTM_1_EXCLD_CLM_CNT],
[MTHLFOPT_SUM].[DDSTM_EXCLD_CLM_CNT], [MTHLFOPT SUMJ.[FOITM_CLM_CNT],
[MTHLFOPT_SUM].[FO2TM_DAYS], [RPTOFC_MV].[EFF_ENDT], [RPTOFC_MV].[ROCD],
[RPTOFC_MV].[RPTD_OCD], [DSPN_DM].[EFF_ENDT],
[MTHLFOPT_SUM].[FO2TM_EXCLD_CLM_CNT], [MTHLFOPT_SUM].[PFTM_EXCLD_CLM_CNT],
[MTHLFOPT SUM].[TRNSTTM_3_EXCLD_CLM_CNT], [RPTOFC_MV].[OFC_REOPN_DT],
[DAYRANGE_DM].[EFF_STDT], [DSPN_DM].[SRC_APP_CD], [DAYRANGE DM].[DAY_RANGE_CDES(],
[DAYRANGE_DM].[SRC_APP_CD], [MTHLFOPT_SUM].[OMPT_DAY_RANGE_SYS_NUM],
[MTHLFOPT_SUMJ.[RVSDTM_CLM_CNT], [MTHLFOPT SUM].[TRNSTTM_1_DAYS],
[RPTOFC_MV].[RPT_TO_OFC_TYP_NM], [DAYRANGE_DM].[DAY_RANGE_SYS_NUM],
[DAYRANGE_DM].[DAY_RANGE_TYP], [DAYRANGE_DM].[INSRT_TS], [DAYRANGE_DM].[LU_TS],
[MTHLFOPT_SUM].[TM_SYS_NUM], [RPTOFC_MV].[ALT_ID_CD], [RPTOFC_MV].[OFC_NM],
[RPTOFC_MV].[OFC_TYP_TXT], [RPTOFC_MV].[VLD_SW], [MTHLFOPT_SUM].[FO2TM_CLM_CNT],
[MTHLFOPT_SUM].[PFTM_DAYS], IMTHLFOPT_SUM].[WKLD_CMPLDT], [RPTOFC_MV].[INSRT_TS],
[RPTOFC_MV].]MOD_NUM], [RPTOFC_MV].[ROLTR], [RPTOFC_MV].[RPT_TO_OFC_TYP],

[RPTOFC_MV].[RPTD_HLVL_GRPG_CD], [RPTOFC_MV].[RPTD_RI], [RPTOFC_MV].[RPTD_RSN_CD],
[DAYRANGE_DM].[DAY_RANGE_CD], [DAYRANGE_DM].[HIGH_CNT], [DSPN_DM].[DISB_DCN_CD],
[DSPN_DM].[LU_TS], [DSPN_DM].[VLD_SW], [MTHLFOPT_SUM].JOMPT_EXCLD_CLM_CNT],
[MTHLFOPT_SUM].[TRNSTTM_2_CLM_CNT], [RPTOFC_MV].[EFF_STDT], [RPTOFC_MV].[OFC_TYP],
[RPTOFC_MV].[RGN_ACR], [DSPN_DM].[DSPN_SYS_NUM], [MTHLFOPT_SUM].[DDSTM_DAYS],
[RPTOFC_MV].[ADOCD], [RPTOFC_MV].[ST_AGY_CD], [MTHLFOPT_SUM].[FOTM_EXCLD_CLM_CNT],
[MTHLFOPT_SUM].[TRNSTTM_2_DAYS], [MTHLFOPT_SUM].[TRNSTTM_2_EXCLD_CLM_CNT],
[MTHLFOPT_SUM].[TRNSTTM_3_CLM_CNT], [RPTOFC_MV].[SRC_APP_CD], [DSPN_DM].[INSRT_DT],
[MTHLFOPT_SUM].[MED_FLDR_ORECTYP_SYS_NUM], [RPTOFC_MV].[RPT_TO_OFC_NM],
[RPTOFC_MV].[RPTD_OFC_NM], [DAYRANGE_DM].[EFF_END], [DAYRANGE_DM].[LOW_CNT],
[MTHLFOPT_SUM].[CLRD_NOT_TMLY_CNT], MTHLFOPT_SUM].[DQBTM_EXCLD_CLM_CNT],
[MTHLFOPT_SUM].[JOMPT_DAYS], MTHLFOPT_SUM].[STRCT_TYP_CD], [RPTOFC_MV].[AREA_NM],
[RPTOFC_MV].[OCD], RPTOFC_MV].[OFC_CLOS_DT], [RPTOFC_MV].[OFC_ESTB_DT],
[RPTOFC_MV].[RPTD_RSN_DESC], [RPTOFC_MV].[ST_ABBR],
[MTHLFOPT_SUM].[APP_PGM_BNFT_SYS_NUM], [MTHLFOPT_SUM].[FO1TM_DAYS],
[MTHLFOPT_SUM].[OFC_SYS_NUM], [RPTOFC_MV].[RPTD_DOCFL_OFC_TYP],

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 12

[DSPN_DM].[DISB_DCN_CDESC], [MTHLFOPT_SUM].[FOTM_CLM_CNT],
[MTHLFOPT_SUM].[INSRT_TS], [MTHLFOPT_SUM].[RVSDTM_EXCLD_CLM_CNT],
[DSPN_DM].[DSPN_TPDESC], [MTHLFOPT_SUM].[TRNSTTM_3_DAYS],
[RPTOFC_MV].[DOCFL_OFC_TYP], RPTOFC_MV].[RPTD_ADOCD], [DAYRANGE_DM].[VLD_SW],
[DSPN_DM].[DSPN_TYP], RPTOFC_MV].[RGN_NM], [DSPN_DM].[EFF_STDT],
[MTHLFOPT_SUM].[DDSTM_CLM_CNT], [MTHLFOPT_SUM].[FO_DAY_RANGE_SYS_NUM],
[MTHLFOPT_SUM].[RVSDTM_DAYS], [MTHLFOPT_SUM].[TOC_SYS_NUM],
[MTHLFOPT_SUM].[WKLD_GRP_CD], RPTOFC_MV].[DOCFL_OFC_TYP_TXT],
[RPTOFC_MV].[OFC_SYS_NUM], [RPTOFC_MV].[RPTD_DOCFL_OFC_TXT], [RPTOFC_MV].[ST],
[MTHLFOPT_SUM].[DQBTM_DAYS], MTHLFOPT_SUM].[FOTM_DAYS],
[MTHLFOPT_SUM].[JOMPT_CLM_CNT], RPTOFC_MV].[STNM],
[MTHLFOPT_SUM].[DQBTM_CLM_CNT], MTHLFOPT_SUM].[FO1TM_EXCLD_CLM_CNT],
[RPTOFC_MV].[LU_TS], [RPTOFC_MV].RPTD_HLVL_GRPG_NM]

Tables:

--data model retrieve tables

select distinct dmt section_id, string agg(cast(concat('[, dbt RDBMS_TABLE_NAME, ') as varchar(max)), ", ") as Tables
from [V8_H_DOCUMENT] d

inner join [V8_H_SECTION] s on d document_id = s.document_id

inner join [V8_H_DM_TABLE] dmt on s SECTION_ID = dmt SECTION_ID

inner join [V8_H_DB_TABLE] dbt on dmt RDBMS_TABLE_ID = dbt RDBMS_TABLE_ID

where SECTION_TYPE_ID = 4 and s section_id = 77748808

group by dmt section_id

section_jd . Tables
| 77748808 | IDAYRANGE_DM]. [DSPN_DM]. [RPTOFC_MV]. [MTHLFOPT_SUM]

Text: [DAYRANGE_DM], [DSPN_DM], [RPTOFC_MV], [MTHLFOPT_SUM]

Table Joins:

--Data model retrieve table joins

select z section_id,

string_agg(cast(concat('[,z.tbll,]’,""'[,z.coll,T’, ' =", '[,ztbl2]',""[, z.col2,]") as varchar(max)),' and ') as Joinclause
from (

select distinct s section_id, dbtl RDBMS_TABLE NAME as tbll, dbcl RDBMS_COLUMN_NAME as coll,
dbt2 RDBMS_TABLE NAME as tbl2, dbc2 RDBMS_COLUMN_NAME as col2

from [V8_H_DOCUMENT] d

inner join [V8_H_SECTION] s on d document_id = s. document_id

inner join [V8_H_DM_JOIN] dmj on s SECTION_ID = dmj SECTION_ID

inner join [V8_H_DM_COLUMN] dmcl on dmj FROM_HPSU_COLUMN_ID = dmc1 DM_COLUMN_ID
inner join [V8_H_DB_COLUMN] dbcl on dmcl RDBMS_COLUMN_ID = dbcl RDBMS_COLUMN_ID
inner join [V8_H_DB_TABLE] dbtl on dbc1 RDBMS_TABLE_ID = dbtl RDBMS_TABLE_ID

inner join [V8_H_DM_COLUMN] dmc2 on dmj TO_HPSU_COLUMN_ID = dmc2 DM_COLUMN_ID
inner join [V8_H_DB_COLUMN] dbc2 on dmc2 RDBMS_COLUMN_ID = dbc2 RDBMS_COLUMN_ID
inner join [V8_H_DB_TABLE] dbt2 on dbc2 RDBMS_TABLE_ID = dbt2 RDBMS_TABLE ID

where SECTION_TYPE_ID = 4 and s SECTION_ID = 77748808

)asz

group by zSECTION_ID

Output:
section_id Joinclause

...............................

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018

[MTHLFOPT_SUM].[DSPN_SYS_NUM] = [DSPN_DM].[DSPN_SYS_NUM] and
[MTHLFOPT_SUM].[FO_DAY_RANGE_SYS_NUM] = [DAYRANGE_DM].[DAY_RANGE_SYS_NUM] and
[MTHLFOPT SUM].[OFC_SYS_NUM] = [RPTOFC_MV].[OFC_SYS_NUM]

To find out the filters that are used:

select s section_id, cast(string agg(dLLIMIT_VALUE' and ') as varchar(max)) as Filters
from [V8_H_DOCUMENT] d
inner join [V8_H_SECTION] s on d document_id = s document_id
inner join [V8_H_DM_IIMIT COL] dl on dlPARENT_SECTION_ID = s SECTION_ID
where SECTION_TYPE_ID = 4 and s SECTION_ID = 77748808
group by s.section_id
section_id Filters
This particular data model does not have any filters but here are examples of results of some data
model sec_tions that do:

section_jd Filters

74429787 Workload _Category_Dimension Wordoad_Structure_Code=
74334514 AL1 PAYPRD_NUM IN (21°, 22", 23", 24", "25', '26") and AL
74398966 Workload_Category_Dimension Workload_Structure_Code =
74165853 PAYODS_Master_Charge CAN_View Pay_Penod_Number |

Data model sections do not contain computed or sort columns so we have everything we need to recreate the SQL
Query by combining the results of the display fields and tables, the joins, and the filters. The V§_H_DM COLUMN
table contains 36,121,433 rows so performance is a consideration. Identifying the section metadata and dynamically
recreating report content on the fly can slow performance when using a web front end or running a migration script.
We can de-normalize data to improve application performance and this is acceptable as we are pulling data from EPM
for management information purposes. This process does not maintain the integrity of the source data, which falls to
the EPM application. In this instance, I opted to stage the individual section and related component information into a
table called DocumentContent. I inserted a row into this table for each section and created individual columns to hold
the rolled-up, formatted versions of the display fields, tables, joins, and filter. The code to create this table and insert the
individual section information is contained in Appendix B. Then I use a final script to join the pieces together. Below is
a screen shot of a sample of the data model information contained in the DocumentContent table.

Fests ff Messages
fp\jJn Deacaan SecteniD GuwyTest SecsorMame DhgleyFulss Taben e
633 | 154048 3702659 SELECT COMACC FY_END EMP DataMosel [COMACC] [FY_END) [E [SERES] [SERIES] [ENS TCDY, [PHNCDE JRETCD] (RAC PERACT GEND_EE_ID « ENPLEE GI

15514 O ZNI207 SELECT CASEAPRCT D04 5T DetoMosei 1) [CASE] IAPLCT 0063 3 DFCREF] FLDA) ROOWCHAR] IRMVANT] CLACT CASE CASE_NUM » EFLDRTXNCAS
15320 1006 2EWEM SELECT CASE CAL_CRATN_ACT DetaModel? [CASEJCAL CRYN ACT [CASE] ILACTHIS] IOFCXREF] DFCXREF] RPTOFCL [CLACTHIS ORIGG _OCD « RFTOSC O
230 S48 M0IM) SELECTAPPTYPLU_TS COMA DeteModel (APPTYPIAU_TS. COM IWAKSCOL [APFTYPY [SAC] ISACL [SAC) PERACTL I LGLALCD LOLAUTH LD « PERACT |
6345 154081 910017 SELECT EMPLEE POL EMPLER DeteMosel1S [EMPLEE] [POI| [EWALE NOACD] IDPMATYF] [EMPLEE] PERACT) [SAC) OPMATYP OPM_AWRD_TYF « PERY
3 ok Cage] SELECT STATEID ST S0CGOX! DetaModelf [STATEDLIST) [SOLOO ISTATEID] [SOLGOX SOLQONST « STATEID ST

Now that you have staged all the data, you can put it all together to recreate your data model.

--query to put everything together for data model
select s [Section ID],
'Query' = case when DisplayFields is null then ' no data’ --tables joins filters
when not Filters is null and not Joins is null then
concat('SELECT ', [DisplayFields], ' FROM ', [Tables], ' Where ', [Joins], ' and ', [Filters])
when not Filters is null and Joins is null and SortFields is null then
concat('SELECT ', [DisplayFields], ' FROM ', [Tables], ' Where ', [Filters])
when Filters is null and not Joins is null then

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 14

concat('SELECT ', [DisplayFields], ' FROM ', [Tables], ' Where ', [Joins])

when Filters is null and Joins is null then

concat(SELECT ', [DisplayFields], ' FROM ', [Tables])

Else concat('SELECT ', [DisplayFields], ' FROM ', [Tables], ' Where ', [Joins], ' and ', [Filters]) End
from [V8_H_DOCUMENT] d
inner join [V8_H_SECTION] s on d document_id = s. document_id
inner join [dbo].[DocumentContent] ¢ on s SECTION_ID = c SectionID and s.section_id = 77748808

B

Text: SELECT [MTHLFOPT_SUM].[CLRD_NOT_TMLY_CNT], [MTHLFOPT_SUM].[DDSTM_DAYS],
[MTHLFOPT_SUM].[DDSTM_EXCLD_CLM_CNT], [MTHLFOPT_SUM].[TM_SYS_NUM],
[RPTOFC_MV].[AREA_NM], DAYRANGE_DM].[LU_TS], [MTHLFOPT SUM].[APP_PGM_BNFT_SYS_NUM],
[MTHLFOPT_SUM].[OFC_SYS_NUM], [MTHLFOPT_SUM] [OMPT_DAYS],
[MTHLFOPT_SUM].[TRNSTTM_1_CLM_CNT], DAYRANGE_DM] [DAY_RANGE_SYS_NUM],
[DAYRANGE_DM].[EFF_END], [DSPN_DM].[DISB_DCN_CD],

[MTHLFOPT SUM].[FO2TM_EXCLD_CLM_CNT], MTHLFOPT _SUM].[PFTM_DAYS],
[MTHLFOPT_SUM].[RVSDTM_EXCLD_CLM_CNT], RPTOFC_MV].[ST_AGY_CD],
[DSPN_DM].[DSPN_SYS_NUM], [DSPN_DM].[LU_TS], MTHLFOPT_SUM].[TRNSTTM_1_EXCLD_CLM_CNT],
[RPTOFC_MV].[OFC_CLOS_DT], RPTOFC_MV].[OFC_REOPN_DT], [DSPN_DM].[DISB_DCN_CDESC],
[MTHLFOPT_SUM].[FO2TM_DAYS], MTHLFOPT_SUM].[FOTM_EXCLD_CLM_CNT],

[MTHLFOPT SUM].[LU_TS], MTHLFOPT _SUM].[PFTM_EXCLD_CLM_CNT]J,
[RPTOFC_MV].[DOCFL_OFC_TYP], RPTOFC_MV].[EFF_ENDT], RPTOFC_MV].RPTD_RSN_DESC],
[MTHLFOPT_SUM].[DDSTM_CLM_CNT], MTHLFOPT_SUM].[FO_DAY_RANGE_SYS_NUM],
[MTHLFOPT_SUM].[OMPT_DAY_RANGE_SYS_NUM], [MTHLFOPT_SUM].[TRNSTTM_3_EXCLD_CLM_CNT],
[MTHLFOPT_SUM].[WKLD_CMPLDT], MTHLFOPT_SUM].[WKLD_GRP_CD], [RPTOFC_MV].[LU_TS],
[RPTOFC_MV].[RPT_TO_OFC_NM], [RPTOFC_MV].RPTD_DOCFL_OFC_TXT],
[MTHLFOPT_SUM].[CLRD_EXCLD_CNT], [RPTOFC_MV].ROCD], [RPTOFC_MV].[RPTD_OCD],
[RPTOFC_MV].[RPTD_RSN_CD], [RPTOFC_MV].[SRC_APP_CD], RPTOFC_MV].[STNM],
[DAYRANGE_DM].[SRC_APP_CD], [MTHLFOPT _SUM].[CLRD_TMLY_CNT],
[MTHLFOPT_SUM].[OMPT_CLM_CNT], MTHLFOPT_SUM].[RVSDTM_DAYS], RPTOFC_MV].[OFC_NM],
[RPTOFC_MV].[VLD_SW], [DSPN_DM].[INSRT_DT], MTHLFOPT_SUM].[DQBTM_CLM_CNT],
[MTHLFOPT_SUM].[TOC_SYS_NUM], [RPTOFC_MV].[RGN_NM], RPTOFC_MV].[RPT_TO_OFC_TYP_NM],
[RPTOFC_MV].[RPTD_RI], DAYRANGE_DM].[EFF_STDT], MTHLFOPT_SUM].[TRNSTTM_2_DAYS],
[RPTOFC_MV].[DOCFL_OFC_TYP_TXT], RPTOFC_MV].[INSRT_TS], RPTOFC_MV].[OCD],
[RPTOFC_MV].[RPTD_ADOCD], [RPTOFC_MV].[ST], DAYRANGE_DM].[DAY_RANGE_CDESC],
[DSPN_DM].[SRC_APP_CD], [MTHLFOPT_SUM].[FOTM_DAYS], MTHLFOPT_SUM].INSRT_TS],
[MTHLFOPT SUM].[MED_FLDR_ORECTYP_SYS_NUM], [MTHLFOPT _SUM].[TRNSTTM_3_CLM_CNT],
[RPTOFC_MV].[ADOCD], RPTOFC_MV].[EFF_STDT], RPTOFC_MV].[OFC_ESTB_DT],
[RPTOFC_MV].[RPTD_DOCFL_OFC_TYP], DAYRANGE_DM].[DAY_RANGE_CD],
[DSPN_DM].[DSPN_TPDESC], MTHLFOPT _SUM].[DQBTM_EXCLD_CLM_CNT],
[MTHLFOPT_SUM].[OMPT_EXCLD_CLM_CNT], DAYRANGE_DM].[LOW_CNT],
[MTHLFOPT_SUM].[FOITM_EXCLD_CLM_CNT], [DAYRANGE_DM].[VLD_SW], [DSPN_DM].[EFF_STDT],
[MTHLFOPT_SUM].[FO1TM_CLM_CNT], [MTHLFOPT_SUM].[TRNSTTM_1_DAYS], RPTOFC_MV].[RGN_ACR],
[RPTOFC_MV].[RPT_TO_OFC_TYP], DAYRANGE_DM].[DAY_RANGE_TYP],
[MTHLFOPT_SUM].[PFTM_CLM_CNT], [MTHLFOPT_SUM].[STRCT_TYP_CD],
[RPTOFC_MV].[OFC_SYS_NUM], [RPTOFC_MV].[ST_ABBR], [MTHLFOPT_SUM].[DSPN_SYS_NUM],
[MTHLFOPT_SUM].[FO1TM_DAYS], MTHLFOPT_SUM].[TRNSTTM_2_EXCLD_CLM_CNT],
[RPTOFC_MV].[RPTD_HLVL_GRPG_NM], [DSPN_DM].[EFF_ENDT], [MTHLFOPT SUM].[DQBTM_DAYS],
[MTHLFOPT_SUM].[FOTM_CLM_CNT], [MTHLFOPT_SUM].[RVSDTM_CLM_CNT],
[MTHLFOPT_SUM].[TRNSTTM_3_DAYS], RPTOFC_MV].[OFC_TYP], RPTOFC_MV].[OFC_TYP_TXT],
[RPTOFC_MV].[RPTD_OFC_NM], [DAYRANGE_DM].[HIGH_CNT], [DSPN_DM].[VLD_SW],
[MTHLFOPT_SUM].[TRNSTTM_2_CLM_CNT], [RPTOFC_MV].[MOD_NUM], [DAYRANGE_DM].[INSRT_TS],
[DSPN_DM].[DSPN_TYP], MTHLFOPT _SUM].[FO2TM_CLM_CNT], RPTOFC_MV].[ALT_ID_CD],
[RPTOFC_MV].[ROLTR], RPTOFC_MV].[RPT_TO_OCD], RPTOFC_MV].[RPTD_HLVL_GRPG_CD]

FROM [DSPN_DM], [DAYRANGE_DM], [RPTOFC_MV], [MTHLFOPT_SUM]
Where MTHLFOPT SUM.FO DAY RANGE_SYS NUM = DAYRANGE_DM DAY RANGE_SYS NUM and

MTHLFOPT _SUM.DSPN_SYS_NUM = DSPN_DM.DSPN_SYS_NUM and MTHLFOPT SUM.OFC_SYS_NUM =
RPTOFC_MV.OFC_SYS_NUM

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 15

For best performance, I took this select statement and integrated it into an update statement to save the output to the
datacontent table. This improves the performance of the prototype web front-end and python migration script that I

discuss in a later section of this paper. Here is the same query wrapped up into an update statement:

--update query text for data model sections
—-this updates just one data model section 77748808
— remove "and dc.sectionid = 77748808" to update for all
Update dc
set [QueryText] = x Query
from dbo DocumentContent dc
inner join
(
select s_[Section_ID],
'Query' = case when DisplayFields is null then ' no data’ —tables joins filters
when not Filters is null and not Joins is null then
concat('SELECT ', [DisplayFields], ' FROM ', [Tables], ' Where ', [Joins], ' and ', [Filters])
when not Filters is null and Joins is null and SortFields is null then
concat('SELECT ', [DisplayFields], ' FROM ', [Tables], ' Where ', [Filters])
when Filters is null and not Joins is null then
concat('SELECT ', [DisplayFields], ' FROM ', [Tables], ' Where ', [Joins])
when Filters is null and Joins is null then
concat('SELECT ', [DisplayFields], ' FROM ', [Tables])
Else concat(SELECT ', [DisplayFields], ' FROM ', [Tables], ' Where ', [Joins], ' and ', [Filters]) End
from [V8_H_DOCUMENT] d
inner join [V8_H_SECTION] s on d document_id = s.document_id
inner join [dbo] [DocumentContent] ¢ on s SECTION_ID = ¢ SectionID
where s SECTION_TYPE _ID = 4

) as x on dc SectionID = x SECTION_ID and dc sectionid = 77748808

You will note that I put square brackets around the table and columns names. This is just a preventative measure. Most

database systems do not support spaces in table and column names and if there are spaces, you have to put brackets
around the names for the queries to work.

Data Model Section Types with Meta Topic Tables

One thing I noticed about the Data models is that it categorized the data source tables into two different types either as
a ‘DM Table’ or ‘DM Meta Topic’ table. The query we just walked through is sufficient for the tables categorized as a
‘DM Table’. The tables categorized as Meta Topic are not physical tables but a view of one or more data models. These
are harder to trace down to the physical data source. If you look at the output below, section 74834631 has two tables
listed, one of which is SSIPT MONTHLY FO, which is a Meta Topic table and Monthly Field Office Processing
Time Summary, which is a DM Table. We can trace the DM table to its physical source, which is evident as it has a
foreign-key entry in the RDBMS_TABLE_ID column.

DM_TABLE.. DM_TABLE_NAME DM_TABLE_TYPE_ID RDBMS_TABLE_ID SECTION_ID NAME
74834615 Sums Type Of Claim Dimension 410 494 74834606 DM Table
74834632 SSIPT Monthly FO an NULL 74834631 DM Meta Topic
74834634 Monthly Field Office Processing Time Summary 410 247 74834631 DM Table

For the Metatopic tables, it may be useful to identify the tables and columns even though they contain spaces and special
characters because depending on your target environment, you may want to recreate those views. For instance, you
could use this to map to clusters in a WebFocus target solution. If you do stage those views with the same names, the
queries would work. Even if you use different names, you could modify the scripts to replace the old name with the new

name. In this instance, you could continue to use the same query for the tables in both categories.

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 16

However, if you need to identify the physical table and column names from the source table and columns used in the
Meta Topic table then you can either leverage its parent data model section, or alternatively get creative with another
query. Iam going to show one way to do this with a query. There is always more than one way in the SQL world to get
something done. Each column associated with a Meta Topic table has a Definition field that contains the physical table
name and column name separated by period. This field is only populated for the Meta Topic tables and is null in the
rows that are categorized as DM Tables. Use the following query to separate the tables and columns into separate fields.

—retrieve the physical and column names for the metatopic tables
SELECT DM_COLUMN_ID,dmc DEFINITION,
substring(dmc definition,1, charindex(".",dmc DEFINITION.,1) - 1) as topicTablename,
right(dmec definition, (len(dmc definition) - charindex(".,.dmc DEFINITION,1))) as topicColname
FROM [V8_H_DM_TABLE] dmt
inner join [V8_H_CONSTANT] c on dmt DM_TABLE_TYPE_ID = cID
inner join [V8_H_DM_COLUMN] dmc on dmt DM_TABLE _ID = dmc DM_TABLE_ID
inner join [V8_H_CONSTANT] c2 on dmc DM_COLUMN_TYPE ID = c2ID
left outer join [V8_H_SECTION_DEP] sd on dmt SECTION_ID = sd CHILD_SECTION_ID
where section_id = 74834631
and dmc DEFINITION is not null and dmc definition like '%0.%'

DM_COLUMN_ID DEFINITION topc Tatlaname topxCokrame

1399605850 | Meorthiy_Peid_Office_Processrng_Time_Sumwary Fiskd O Monthiy_Feld_Ofice_Processing_Time_Summary Fieid_Ofice _1_Time_Excluded_Claen_Court
1298605892 Monthiy_Field_Office_Processng_Time_Summary Disabie Morshly_Feld_Ofce_Processng_Time_Summary Disabity_Determination_Service_Time_Excluded_C
1398605893 Sum_Type Of Oaem_Dwmension Woddoad Category Co Suma_Type _Of_Clam_Dwmension Woddcac_Category_Code_Descrption
1198605855 Repotrg_(Office_Mmtersized View Dimenson Repoded Reporting_Ofice_Matenskzad View Dmension Repoted_Mgh_Level Groupng _Narme

Then you could modify to combine with the earlier query for the “DM TABLE’ as a derived table and use an outer join

to get the display fields and table names if needed. My sample report does not need this so I will continue on to the next
section type.

Query Section Type

This may be a little tricky to describe as I am going to talk about writing a SQL Query to recreate a query in EPM. I will
distinguish between the two by calling the query I write as a SQL Query and the query that I am trying to recreate as
just a plain ‘query’ even though in the end they are both SQL queries. You retrieve table and column information from

query sections similar to the data model sections. Queries sections contain display fields, tables, table joins, sorts, and
filters.

There are associative tables that connect the column fields to the table fields for each section. The
V8_H_QRYCOL_DMCOL table maps the query columns to the data model columns. The V8_H_QRYCOL_RSCOL
table maps the query columns to the results columns. To figure out the physical columns, you have to map the
RDBMS_COLUMN_ID column in the V8_H_DM_COLUMN table to the RDBMS_COLUMN_ID column in the
V8_H DB_COLUMN table. The V§_H_DM_COLUMN column contains rows for the columns used by each data
model section. The V8_H_DB_COLUMN column contains rows for each physical database. The best way is to
illustrate this is with a SQL query. Here are the SQL queries that you can use to retrieve and format each query part. By
format, I mean that we are grouping all the content into one large string value for each query section. When this value is
output, you can be paste into a SQL query tool and use like any other SQL query.

For the SQL queries, we will return to using the sample document with a document_id of 1409716. This document has
one query section type and its section_id is 77748813.

Here is the SQL query to retrieve the display fields and then rollup those fields to one row to format for each query
section.

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 17

—-retrieve display fields for query section type

select t1 SECTION_ID, string_agg(tl field,', ') as Fields
from

(

select distinct s SECTION_ID, sd PARENT_SECTION_ID, sd PARENT_SECTION_NAME, sd PARENT TYPE_ID,

cast(concat(replace(replace(replace(replace(qc.SQL_DEFINITION,' U), Tas
[L.gc. QRY_COLUMN_NAME, ") as varchar(max)) as field

from [V8_H_DOCUMENT] d

inner join [V8_H_SECTION] s on d document_id = s.document_id

inner join [V8_H_QRY_QUERY] q on ¢ SECTION_ID = s SECTION_ID

inner join [V8_H_QRY_COLUMN] qc on ¢ QRY_QUERY_ID = qc.QRY_QUERY_ID

left outer join V8_H_QRYCOL DMCOL qdm on qc.QRY_COLUMN_ID = qdm QRY_COLUMN_ID
left outer join [V8_H_SECTION_DEP] sd on s SECTION_ID = sd CHILD_SECTION_ID
where SECTION_TYPE_ID = 8 and q¢ DESCRIPTOR_FLAG in (102,103)

and s SECTION_ID = 77748813) as tl

group by t1 SECTION_ID

Results:
SECTION ID Fuelds

77748813 i Mhloot_Sun Ompt_Cim_Cnt as [Ompt Cim Cnt] . DSPN_DM.DSPN_TPDESC as [DSPN_TPDESC] . Rptofc_Mv.Rgn_Nm as [Rgn Nm]

Query Section - Tables

--format tables for database query
select z section_id, cast(string_agg(concat('[,z TableName,""), ', ') as varchar(max)) as tblList
from
(
select distinct s section_Id,
dbt RDBMS_TABLE_NAME as TableName
from [V8_H_SECTION] s
inner join [V8_H_SECTION_DEDP] sd on s SECTION_ID = sd CHILD_SECTION_ID
inner join [V8_H_DM _JOIN] dmj on sd PARENT SECTION_ID = dmj SECTION_ID
inner join [V8_H_HPSU_COLUMN] hco on dmj FROM_HPSU_COLUMN_ID = hco HPSU_COLUMN_ID
inner join [V8_H_DM_COLUMN] dmc on hco HPSU_COLUMN_ID = dmc DM_COLUMN_ID
inner join [V8_H_DB_COLUMN] dbc on dmc RDBMS_COLUMN_ID = dbc RDBMS_COLUMN_ID
inner join [V8_H_DB_TABLE] dbt on dbc RDBMS_TABLE_ID = dbt RDBMS_TABLE_ID
where s SECTION_TYPE_ID = 8 and s SECTION_ID = 77748813
union --union table to ensure we tables from parent section
select distinct s section_Id,
dbt2 RDBMS_TABLE_NAME
from [V8_H_SECTION] s
inner join [V8_H_SECTION_DEP] sd on s SECTION_ID = sd CHILD_SECTION_ID
inner join [V8_H_DM_JOIN] dmj on sd PARENT SECTION_ID = dmj.SECTION_ID
inner join [V8_H_HPSU_COLUMN] hco on dmj FROM_HPSU_COLUMN_ID = hco HPSU_COLUMN_ID
inner join [V8_H_HPSU_COLUMN] hco2 on dmj TO_HPSU_COLUMN_ID = hco2 HPSU_COLUMN_ID
inner join [V8_H_DM_COLUMN] dmc2 on hco2 HPSU_COLUMN_ID = dmc2 DM_COLUMN_ID
inner join [V8_H_DB_COLUMN] dbc2 on dmc2 RDBMS_COLUMN_ID = dbc2 RDBMS_COLUMN_ID
inner join [V8_H_DB_TABLE] dbt2 on dbc2RDBMS_TABLE_ID = dbt2 RDBMS_TABLE_ID
where s SECTION_TYPE_ID = 8 and s SECTION_ID = 77748813) as z group by zSECTION_ID

section_id tblList

77748813 | [DAYRANGE_DM], [DSPN_DM], [MTHLFOPT_SUM]. [RPTOFC_MV]

Query Section - Joins

--query section - retrieve able joins and format for query
select z SECTION_ID, cast(string_agg(zjoinCl, ' and ') as varchar(max)) as JoinClause from
(select distinct s section_Id,

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018

cast(concat(dbt RDBMS_TABLE_NAME, ''.dbc RDBMS_COLUMN_NAME, '=

'"dbt2 RDBMS_TABLE NAME,""' dbc2 RDBMS COLUMN_NAME) as varchar(max)) as joinCl

from [V8_H_SECTION] s

inner join [V8_H_SECTION_DEP] sd on s SECTION_ID = sd CHILD_SECTION_ID

inner join [V8_H_DM_JOIN] dmj on sd PARENT SECTION_ID = dmj SECTION_ID

inner join [V8_H_HPSU_COLUMN] hco on dmj FROM_HPSU_COLUMN_ID = hco HPSU_COLUMN_ID
inner join [V8_H_HPSU_COLUMN] hco2 on dmj TO_HPSU_COLUMN_ID = hco2 HPSU_COLUMN_ID
inner join [V8_H_DM_COLUMN] dmc on hco HPSU_COLUMN_ID = dmc DM_COLUMN_ID

inner join [V8_H_DM_COLUMN] dmc2 on hco2 HPSU_COLUMN_ID = dmc2 DM_COLUMN_ID

inner join [V8_H_DB_COLUMN] dbc on dmc RDBMS_COLUMN_ID = dbc RDBMS_COLUMN_ID
inner join [V8_H_DB_COLUMN] dbc2 on dmc2 RDBMS_COLUMN_ID = dbc2 RDBMS_COLUMN_ID
inner join [V8_H_DB_TABLE] dbt on dbc RDBMS_TABLE_ID = dbt RDBMS_TABLE_ID

inner join [V8_H_DB_TABLE] dbt2 on dbc2 RDBMS_TABLE_ID = dbt2 RDBMS_TABLE_ID

where s SECTION_TYPE_ID = 8 and s SECTION_ID = 77748813) as z

group by zsection_id

SECTION_ID JoinClause
77748813 | MTHLFOPT_SUM.DSPN_SYS_NUM = DSPN_DM.DSPN_SYS_NUM and MTHLFOPT_SUM.FO_DAY_RANGE_..

Text: MTHLFOPT_SUM.DSPN_SYS_NUM = DSPN_DM DSPN_SYS_NUM and
MTHLFOPT_SUM.FO_DAY_RANGE_SYS_NUM = DAYRANGE_DMDAY_RANGE_SYS_NUM and
MTHLFOPT_SUM.OFC_SYS_NUM = RPTOFC_MV.OFC_SYS_NUM

Query Section - Filters

--query section get filters and format
select x SECTION_ID, string_ agg(cast(JoinClause as varchar(max)),' and) as filters
from
(select s SECTION_ID, replace(replace(replace(replace(qc SQL._ DEFINITION,' U)LY as JoinClause
from [V8_H_DOCUMENT] d
inner join [V8_H_SECTION] s on d document_id = s. document_id
inner join [V8_H_QRY_QUERY] q on q SECTION_ID = s SECTION_ID
mnner join [V8_H_QRY_COLUMN] qc on . QRY_QUERY_ID = qc.QRY_QUERY_ID
where s SECTION_TYPE_ID = 8 and DESCRIPTOR_FLAG = 101 and s SECTION_ID = 77748813) AS x
group by xsection_id
SECTION_ID fiters

Query Section - Sort Columns

--query section get sort columns and format
select z section_id, cast(string age(z SQL_DEFINITION, ', ') as varchar(max)) as sortfield
from
(select distinct s.section_id, dbc RDBMS_COLUMN_NAME, qc SQL_DEFINITION
from [V8_H_SECTION] s
mnner join [V8_H_QRY_QUERY] q on s section_id = q.section_id
inner join [V8_H_QRY_COLUMN] qc on q QRY_QUERY_ID = qc QRY_QUERY_ID
inner join [V8_H_QRYCOL_DMCOL] qcdm on qc QRY_COLUMN_ID = qcdm QRY_COLUMN_ID
mnner join [V8_H_DM_COLUMN] dmc on qcdm HPSU_COLUMN_ID = dmc DM_COLUMN_ID
inner join [V8_H_DB_COLUMN] dbc on dmc RDBMS_COLUMN_ID = dbc RDBMS_COLUMN_ID
inner join [V8_H_DB_TABLE] dbt on dbc RDBMS_TABLE_ID = dbt RDBMS_TABLE_ID
inner join [V8_H_CONSTANT] hc on qc DESCRIPTOR_FLAG = hcID
where s SECTION_TYPE_ID = 8 and qc DESCRIPTOR_FLAG = 103 and s SECTION_ID = 77748813) as z
group by zsection_id
section_id sortfield

77748813 | DSPN_DM.DSPN_TPDESC

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018

Now let us put all of the query parts together to recreate the query:

--query section, after updating documentcontent with query patrts, put it all together
select s [Section_ID], 'Query’ =
case when DisplayFields is null then ' no data’ —-tables joins filters
when not Filters is null and not Joins is null and not SortFields is null then
concat('SELECT ', [DisplayFields], ' FROM ', [Tables], ' Where ', [Joins],
"and ', [Filters], ' Order by ', SortFields)
when not Filters is null and not Joins is null and SortFields is null then
concat('SELECT ', [DisplayFields], ' FROM ', [Tables], ' Where ', [Joins], ' and ', [Filters])
when not Filters is null and Joins is null and not SortFields is null then
concat('SELECT ', [DisplayFields], ' FROM ', [Tables], ' Where ', [Filters], ' Order By ', SortFields)
when not Filters is null and Joins is null and SortFields is null then
concat('SELECT ', [DisplayFields], ' FROM ', [Tables], ' Where ', [Filters])
when Filters is null and not Joins is null and not SortFields is null then
concat('SELECT ', [DisplayFields], ' FROM ', [Tables], ' Where ', [Joins], ' Order By ', SortFields)
when Filters is null and not Joins is null and SortFields is null then
concat('SELECT ', [DisplayFields], ' FROM ', [Tables], ' Where ', [Joins])
when Filters is null and Joins is null and not SortFields is null then
concat('SELECT ', [DisplayFields], ' FROM ', [Tables], ' Order By ', SortFields)
when Filters is null and Joins is null and SortFields is null then
concat('SELECT ', [DisplayFields], ' FROM ', [Tables])
End
from [V8_H _DOCUMENT] d
inner join [V8_H_SECTION] s on d document_id = s.document_id
inner join [dbo].[DocumentContent] ¢ on s SECTION_ID = c SectionID
where SECTION_TYPE_ID = 8 and s SECTION_ID = 77748813

Text: SELECT Mthlfopt_Sum Ompt_Clm_Cnt as [Ompt Clm Cnt] , Rptofc_Mv.Rgn Nm as [Rgn Nm],
DSPN_DM DSPN_TPDESC as [DSPN_TPDESC]

FROM [DSPN_DM], [DAYRANGE_DM], [RPTOFC_MV], [MTHLFOPT_SUM]

Where MTHLFOPT_SUMFO_DAY_RANGE_SYS NUM = DAYRANGE_DM.DAY_RANGE_SYS NUM
and MTHLFOPT_SUMDSPN_SYS_NUM = DSPN_DM.DSPN_SYS_NUM

and MTHLFOPT_SUM.OFC_SYS_NUM = RPTOFC_MV.OFC_SYS_NUM

and Rptofc_ Mv.Rgn Nm IN ("Atlanta’, ‘Boston', 'Chicago’)

Order by DSPN_DM.DSPN_TPDESC

Now that we have successfully recreated our query, let us move on to the Results Section Type.

Results Section Type

The Results section types do not directly connect to data but is rather a way to format and view data from queries and
data models. It also can include formulas to create custom calculations. Because users perform these calculations within
the EPM client tool and not within SQL, we cannot easily port these formulas to the target system. Many users have
expressed the need to identify these computed columns so I at a minimum, focused on identifying the display fields,
filter columns, sort columns, and computed columns. Additionally, the SQL_Definition field contains too many
variations to parse out the tables and columns, as I was able to with the metatopic tables for the data model. You could

take it further if you wish and merge the data with the parent section to create a full query.
For this sample code, I will again work with Document_ID 1409716. The section_id is 77748815.

Result Section — Display Fields

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 20

—-results section, get display fields
select sSECTION_ID, string agg(cast(concat(replace(replace(replace(replace(qc.SQL_DEFINITION,'
U as [e RS_COLUMN_NAME, ') as varchar(max)), ")) as DisplayFields
from [V8_H_DOCUMENT] d inner join [V8_H_SECTION] s on d document_id = s document_id
inner join [V8_H_RS_COLUMN] rc on r¢ SECTION_ID = s SECTION_ID
inner join [V8_H_QRYCOL_RSCOL] qrc on rcRS_COLUMN_ID = qrc RS_COLUMN_ID
inner join [V8_H_QRY_COLUMN] qc on qrc QRY_COLUMN_ID = qc QRY_COLUMN_ID
where sSECTION_TYPE_ID = 10 and rc DESCRIPTOR_FLAG in (102, 103)
and s section_id = 77748815 _ _
SECTION_ID DisplayFields

Text: Rptofc_ Mv.Rgn_Nm as [Rgn Nm],DSPN_DM DSPN_TPDESC as
[DSPN_TPDESC],Mthlfopt_Sum Ompt_Clm_Cnt as [Ompt Clm Cnt]

Result Section — Computed Fields

--results section, get computed fields

77748815 | Rotofc_Mv.Rgn_Nm as [Rgn Nm].DSPN_DM.DSPN_TPDESC

1):

e
]);

select s.section_id, string agg(cast(concat(ct FORMULA, ' as [, tc RS_COLUMN_NAME, ') as varchar(max)),’, ") as

Computed

from [V8_H_DOCUMENT] d inner join [V8_H_SECTION] s on d document_id = s document_id
inner join [V8_H_RS_COLUMN] rc on rc SECTION_ID = s SECTION_ID

inner join [V8_H_RS_COMP_ITEM] ci on rc RS_COLUMN_ID = ci [RS_COLUMN_ID]

where s SECTION_TYPE_ID = 10 and ssection_id = 77748815

group by s SECTION_ID

--No computed fields for this section

Result Section — Sort Fields

--results section, get sort fields

select s section_id, stringagg(cast(concat(replace(replace(replace(replace(qc.SQL_DEFINITION,'

"),'") as varchar(max)), ', ') as SortFields

from [V8_H_DOCUMENT] d inner join [V8_H_SECTION] s on d document_id = s document_id
inner join [V8_H_RS_COLUMN] rc on rc SECTION_ID = s SECTION_ID

mnner join [V8_H_QRYCOL_RSCOL] grc on rc RS_COLUMN_ID = qrc RS_COLUMN_ID

inner join [V8_H_QRY_COLUMN] qc on qrc QRY_COLUMN_ID = qc. QRY_COLUMN_ID
where s SECTION_TYPE_ID = 10 and rc DESCRIPTOR_FLAG = 103 and s section_id = 77748815
group by s.section_id

--No sort fields for this section

Result Section - Filters

--results section, get filters

7' ')7

e

))7

7)7

>

select s SECTION_ID, string agg(cast(concat(rc RS_COLUMN_NAME, 'in (", wLIMIT VALUES, ")) as varchar(max)), '

and ") as Filters

from [V8_H_DOCUMENT] d inner join [V8_H_SECTION] s on d document_id = s document_id
inner join [V8_H_RS_COLUMN] rc on rc SECTION_ID = s SECTION_ID

inner join [V8_H_RS_LIMIT_COL] w on rc RS_ COLUMN_ID = wRS_COLUMN_ID

where s SECTION_TYPE_ID = 10 and s section_id = 77748815

group by s SECTION_ID

--No filters for this section

Result Section — Combine Display Fields, Computed Fields, and Sort Fields

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018

21

--merge result parts

select s [Section_ID], 'Query’ =

case when DisplayFields is null then ' no data'

when not Filters is null and not ComputedFields is null and not SortFields is null

then concat('SELECT ', [DisplayFields], ',', ComputedFields, ' Where ', Filters, ' Order By ', SortFields)
when not Filters is null and ComputedFields is null and SortFields is null

then concat('SELECT ', [DisplayFields], ' Where ', Filters)

when not Filters is null and not ComputedFields is null and SortFields is null

then concat('SELECT ', [DisplayFields], ',’, ComputedFields, ' Where ', Filters)

when not Filters is null and ComputedFields is null and not SortFields is null

then concat('SELECT ', [DisplayFields], ' Where ', Filters, ', Order By ', SortFields)

when Filters is null and not ComputedFields is null and not SortFields is null

then concat('SELECT ', [DisplayFields], ',', ComputedFields, ' Order By ', SortFields)

when Filters is null and ComputedFields is null and SortFields is null

then concat('SELECT ', [DisplayFields])

when Filters is null and not ComputedFields is null and SortFields is null

then concat('SELECT ', [DisplayFields], ', ComputedFields)

when Filters is null and ComputedFields is null and not SortFields is null

then concat('SELECT ', [DisplayFields], ' Order By ', SortFields)

Else concat('SELECT ', [DisplayFields], ' FROM ', [Tables], ' Where ', [Joins], ' and ', [Filters]) End
from [V8_H_DOCUMENT] d

inner join [V8_H_SECTION] s on d document_id = s.document_id

inner join [dbo] [DocumentContent] c on s SECTION_ID = c SectionID and ¢ SectionID = 77748815
where s section_type_id = 10

Section_ID Query

...........................

Text: SELECT Rptofc_Mv Rgn Nm as [Rgn Nm],DSPN_DM DSPN_TPDESC as
[DSPN_TPDESC],Mthlfopt_Sum Ompt_Clm_Cnt as [Ompt Clm Cnf]

Here is an example of output for a result section type that contains a computed column:

SELECT V8_Prop_Value.Value0 as [Email],V8_Subject.Name as [Name],if (Email!l="EMPTY") {Email} else {""}
as [User Email]

This wraps up the results section. There are couple of section types that I will touch on briefly.

Import Section Type

Import section types contain information about data imported from other sources such as a spreadsheet. At a minimum,
we can use a query against the EPM database to provide the file name and fields used from that file. I have provided an
example query below where I am returning the first 100 sections that are imports and retrieving the fields and file that
are used and then rolling up those fields up into a single line for each section.

select top 100 x1.section_id, string agg(cast(concat('[x1 HPSU_TABLE _NAME, [x1 HPSU_COLUMN_NAMET’ as
varchar(max)), ', ') as DisplayFields

from (
select distinct ht DOCUMENT _ID, ht HPSU_TABLE_ID,
ht HPSU_TABLE_NAME, ht HPSU_TABLE TYPE_ID, ct NAME as tableType,
hc HPSU_COLUMN_ID, hc HPSU_COLUMN_NAME, s SECTION_ID, s SECTION_NAME

from

[V8_H_HPSU_TABLE] ht
inner join [V8_H_CONSTANT] ct on ht HPSU_TABLE_TYPE _ID = ctID
inner join [V8_H_HPSU_COLUMN] hc on ht HPSU_TABLE_ID = hc HPSU_TABLE_ID

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 22

inner join [V8_H_SECTION] s on ht DOCUMENT_ID = s DOCUMENT_ID and s SECTION_NAME =
ht HPSU_TABLE_NAME

and s SECTION_TYPE_ID = ht HPSU_TABLE_TYPE_ID

where ht HPSU_TABLE TYPE ID =5

) as x1 group by x1 SECTION_ID

section_id DisplayFields

392930 [Doorsinfo-outts xds]. [RegionLetter]. [Doorsinfo-outts xds) [Office Type). [Doorsinfo-outts xds]. [RegionAcronyn

...............................

9572596 [Cert_acabd].[Gend Ee Id]. [Cert_aca bd] [Status]. [Cert_aca] [Counter], [Cert_aca bd] [HQ/FLD], [Cert,
7632358 [DEV-Combine-111411axds] fhstatus]. [DEV-Combine-111411axds].[Ssn], [DEV-Combine-111411axds].[Us:

--Text from the first result: [DoorsInfo-outts xls].[RegionLetter], [DoorsInfo-outts xls]. [OfficeType], [DoorsInfo-
outts xls].[RegionAcronym], [DoorsInfo-outts xls]. [RegionNumber], [DoorsInfo-outts xls]. [Office TypeCode], [DoorsInfo-

outts xIs].[AreaNumber], [DoorsInfo-outts xls].[OfficeCode], [DoorsInfo-outts.xls]. [ReportsToOfficeCode], [DoorsInfo-
outts xls].[OfficeName]

Table Section Type

The last section type I am going to discuss is the Table Section Type. These section types are locally created tables. Ata
minimum, we can identify the fields and local table name. Here is a query the returns the first 100 sections that are table

types.

--table type
select top 100 x SectionID, STRING AGG(x field, ', ') as fields
from(
select distinct dc sectionid, hc HPSU_COLUMN_1ID,
cast(concat('[,/ht HPSU_TABLE _NAME,T,""['’hc HPSU_COLUMN_NAME) ') as varchar(max)) as field
from [dbo].[DocumentContent] dc
inner join [V8_H_SECTION] s on dc sectionid = s section_id
inner join [V8_H_CONSTANT] c on s SECTION_TYPE_ID = cID
inner join [V8_H_HPSU_TABLE] ht on s SECTION_ID = ht HPSU_TABLE_ID
inner join [V8_H_HPSU_COLUMN] hc on ht HPSU_TABLE_ID = hc HPSU_Table ID
where s SECTION_type_id = 11

)asx
group by x SectionID
Section|D fields

774625 [COOP] [Real Payprd Yr Num], [COOP].[Hours]. [COO...
392938 . [T48pend-compliance] [Dsgne 100 Pct Sw], [T48pen...
444460 [Retirements].[FROM], [Retirements].[Lmtd Actn Expdt...
384731 [Redlined Positions].[Stdadmcdd). [Rediined Posttions]...
443586 [Permanent Supervisors] [Entrd Posn Dt], [Permanent .

Other Section Types.

There are other section types that I was not able to recreate and that includes Pivots, Charts, Report, and Dashboards.
Recreating these sections requires access to the report files themselves, which is not something I had.

Identifying DataSources

The last piece to recreating queries is the datasource they leverage. In EPM, the datasource connections to the databases
are called open catalog extensions (OCEs). Here is the query to identify the OCE for each query section:

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 23

—-identifying datasource

select top 100 oce OCE_UUID, co NAME as OCE s SECTION_ID, s SECTION_NAME d DOCUMENT_ID,
d DOCUMENT

from [V8_QRY_DB_CONN] oce

inner join [V8_CONT_VERSION] ¢ on oce. CONTAINER_UUID = ¢ CONTAINER_UUID

and oce VERSION_NUMBER = ¢ VERSION_NUMBER

inner join [V8_H_DOCUMENT] d on c CONTAINER_UUID = d UUID and ¢ VERSION_NUMBER =
d [VERSION]

inner join [V8_CONTAINER] co on oce OCE_UUID = co CONTAINER_UUID

inner join [V8_H_SECTION] s on d DOCUMENT_ID = s DOCUMENT_ID

where not oce OCE_UUID is null and oce [QUERY_NAME] = s SECTION_NAME

OCE_UUID OCE SECTION_D SECTION_NAME DOCUMENT IO DOCUMENT

[D000010e 38: 7836e 000004 ¥ -9c 12067 | pOICARS DALORA oce 62920 WORKLOAD 1333458 WAH Qawa and Rer

0000011 B0 1fe D000 04240 1206 vSUNS MEORA vmawgy 1 Phya oce Ta163E18 12 vg Gen ORA db sumcapp | weerd 1070 pTan TiEprod SSIP

AT 1 LRSS N AL M o Y NN WL IMOAANAR L b ! Plos e Al o) T P MR A e ann e 1T 399 bevasde .
Restful Web Services

As I mentioned in the introduction, enterprise report solutions use restful web APIs to ease administrative tasks. One of
the target migration environments here at SSA is WebFocus. I will show how one can access WebFocus using Restful
APIs to migrate query section types from EPM.

This process will be similar with any Enterprise Reporting Tool you use. You will need to dig into their administration

and development documentation and adapt these examples for the desired target environment. Here are some of the

links to documentation on using web services APIs for some of the popular vendors:

e IBI WebFocus

source%2Fopener.htm
e Tableau https: i

® Microsoft SQL Server Reporting Services https://docs.microsoft.com/en-us/sql/reporting-

services /developer/rest-apirview=sql-server-2017

Conwverting Query Section Type to WebFocus

The first step is to take a query from EPM and convert it into WebFocus syntax. You also have to map the datasource as
well. I have already staged all the queries for all query section types into QueryText field of the DocumentContent table.
I have another field in the same table called WebFocusText that I will use to save the results of the converted text.

update [dbo].[DocumentContent]

set [WebFocusText] = x webFocusText

from [dbo].[DocumentContent] dcl inner join

(

select dc SectionID, dc.SectionName, dc DataSourceID, dc QueryText, dc DisplayFields,
ds HostName, ds OceName,

case when dc DisplayFields is null then 'NO DATA'

else concat(-DEFAULT &CLIENTID = 183;

- ENGINE SQLORA SET DEFAULT CONNECTION DWEWAND

SQL SQLORA PREPARE SQLOUT FOR

', dc [QueryTexq, '
END

TABLE FILE SQLOUT
PRINT ', replace([DisplayFields], ', ") , '
END)

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 24

end as webFocusText

FROM [dbo].[DocumentContent] dc

inner join [V8_H_SECTION] s on dc SectionID = s SECTION_ID

inner join [dbo]. [DataSource] ds on dc DataSourceID = ds DatasourcelD) as x

on x SectionID = dcl SectionID

where dcl sectiomd = 77748813

--results of webfocus conversion

select sectionid, webFocusText

from [dbo].[DocumentContent] where sectionid = 77748813

Output Text:

-DEFAULT &CLIENTID = 183;

- ENGINE SQLORA SET DEFAULT CONNECTION DWEWAND

SQL SQLORA PREPARE SQLOUT FOR SELECT Mthifopt_Sum Ompt_Clm_Cnt as [Ompt Clm Cnt] ,
Rptofc_Mv.Rgn Nm as [Rgn Nm] , DSPN_DM DSPN_TPDESC as [DSPN_TPDESC] FROM [DSPN_DM],
[DAYRANGE_DM], [RPTOFC_MV], MTHLFOPT_SUM] Where MTHLFOPT SUM FO_DAY_ RANGE_SYS NUM
= DAYRANGE _DMDAY RANGE SYS NUM and MTHLFOPT_SUMDSPN_SYS_NUM =
DSPN_DM DSPN_SYS_NUM and MTHLFOPT SUM.OFC_SYS_NUM = RPTOFC_MV.OFC_SYS_NUM and
Rptofc_Mv.Rgn Nm IN (‘Atlanta’, Boston', 'Chicago") Order by DSPN_DM DSPN_TPDESC END

TABLE FILE SQLOUT PRINT

Mthifopt_Sum Ompt_Clm_Cnt as [Ompt Clm Cnt] Rptofc_Mv.Rgn Nm as [Rgn Nm] DSPN_DMDSPN_TPDESC as
[DSPN_TPDESC] END

Now we can use a Python query. This Python query stores a folder value that it will use to connect to a SQL server, find
all the documents in that folder and then loop through all the documents. As it loops through all the documents, it will
find all the sections and loop through each section. As it loops through each section, it will pull the WebFocus content
and use it to create a virtual WebFocus fex file in memory, connect to the WebFocus server and upload the fex file to
the desired virtual folder on the WebFocus server. The complete python script is available in Appendix C. Let us look at
portions of the script to discuss the critical aspects.

This portion defines the libraries needed within Python to interact with SQL Server, the file system, and WebFocus. I
used the minidom library to parse through the webpage response and retrieve the security token. This security token is
required after the first connection to enable the actual upload activity.

#import needed libraries
import pypyodbc
import csv

import sys

import pandas as pd
import requests

#needed to encode fex file for WebFocus. Encoding is not needed for Tableau
import base64

from requests.auth import AuthBase
from requests.auth import HTTPBasicAuth
from requests.auth import HTTPDigestAuth

#needed to parse through web page response to retrieve security token
import xml etree ElementTree as ET
from xml dom import minidom

This code specifies information needed to connect to WebFocus, which includes the user credentials and URL. You
need to replace the username and password with the credentials you are using. Then we take the username and URL and

build the connection string that the script will send to the WebFocus server to make a web service request.

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 25

##define the api endpoint and user credentials

devuser = 'username’

devpw = 'password'

strbaseurl = 'http:/ /<webserver_url>/ibi_apps/rs/ibfs'

wfDevURL = strbaseurl + "?IBIRS_action=signOn&IBIRS userName="+ devuser + "&IBIRS_password=" + devpw

Here we specify the folder in EPM that contains the documents we want to migrate and use that to build our SQL query

to retrieve the SQL content.
#define folder to be migrated
mgfolder = '/BI Central Office Folders/DCBFM/DCBFM FPA /Development/migrationScript_test'

getdocsSQL = "select document_id from [V8_H_DOCUMENT] where path = " + mgfolder + "

Here we define our connection to SQL Server, make the call to connect to SQL Server, and then make a call to
signonWF() which calls the function that does all of the migration work.

##connection string to migration database

conn = pypyodbc.connect("DRIVER={SQL Server};"
"SERVER=<database server name>;"
"DATABASE=<database name>;"
"Trusted_Connection=yes;")

Cursor = Conmn.cursor| ()

#call function to get documents and perform migration
signonWF()

The code nested under the def sigonWF() function is the block of code that defines the signonWF(). It contains the

logic that when called, performs most of the migration work. I will highlight critical pieces of code under this function.

As a reminder, the entire script is in Appendix C.

This code makes the initial connection to the Webfocus server and checks for a response. If there is a successful
response, it saves the output to a virtual text and xml file.

#defines the signonWF function
def signonWEF():
response = requests_post(wfDevURL)
status = response.status_code
if status == 200:
print('successfully connected ', response.status_code)
I = response.text
#r write('output xml')

cookie = response.cookies
#print(cookie)

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018

26

root = ET fromstring(r)

tree = ET ElementTree(root)
#write to xml file so that minidom can parse it
tree write("output xml")

This next part, extracts the session cookie and security token from the webserver response of the initial connection.
Both the cookie and security token are needed in order to complete the upload. If either piece is missing, this script will

not work.

dom = minidom parse("output.xml")

xmltags = dom getElementsByTagName('entry’)

stoken = [items attributes['value'].value for items in xmltags if items attributes['key'].value ==
"IBI_CSRF_Token Value"]

print(‘security token is ', stoken)

Next we take the dataset we received form executing our early SQL query and loop through all the documents to

retrieve all of the query sections from the document.

mdocs = pd.read_sql(getdocsSQL,con=conn)
d=0
for row in mdocs.values:
docid = row[0]
#identify all query sections that have webfocus content for each document
secsql = "SELECT concat(replace(d DOCUMENT,' ") "), '_sec_', replace(s. SECTION_NAME,'"," ") as docTitle, \
[WebFocusText] FROM [dbo].[DocumentContent] dc inner join [V8_H_DOCUMENT] d on dc.DocumentID =
d DOCUMENT_ID \
inner join [V8_H_SECTION] s on dc.SectionID = s SECTION_ID where not [WebFocusText] is null and not
WebFocusText = 'NO DATA'\

and s. SECTION_TYPE_ID = 8 and dc.documentid = " + str(docid)

wifData = pd.read_sql(secsql,con=conn)

As we look at each query section, we retrieve the WebFocus content and build the virtual fex file. We must then encode
this fex to utf-8. If you do not encode this file, the upload process will insert an empty file. Not all webservers require
this encoding so you should check the documentation of the product you are using.

1=0
for row in wfData values:
#get report title

description = row([0]
filecontent = row([1]

byteobj = base64.b64encode(filecontent encode())
fileobj = byteobj.decode("utf-8")
#print(fileobyj)

reportpath = '/WFC/Repository/BIMigration /uploadtest/' + descrption + ' fex'

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 27

Next, we take the security token and fex file and create an XML object. Then we pass this object along with the cookie object

within another request to the WebFocus server to upload the fex file. Then we move on to the next section.

strtoken = stoken[0]

secToken = '&IBIWF_SES _AUTH_TOKEN='+ strtoken

putObj = '<rootObject _jt="IBFSMRODbject" description="" + description + " type="FexFile"> <content
_jt="IBFSByteContent" char_set="Cp1252">" + fileobj + '</content> </rootObject>"

upURL = strbaseurl + reportpath + ""IBIRS_action=put&IBIRS_object="+ putObj + secToken

#print(upURL)

uploadresponse = requests.post(upURL, cookies=cookie)
#file.close

#print(uploadresponse.text)

#increment for next section

it=1

#increment for next document
di=l

When there are no more sections, the loop exits. The final step is to close the database connection and print a message

indicating that the script is finished.

conn.commit()
cursor.close()
conn close()

prnt("all done migrating for this folder, please check the webfocus server")

Now we can check the Webfocus server to see our files.

SMILE - Visualizing the migration metadata

The ADAL was fortunate to have the support of IO © web developer from the Office Disability Policy
and Management Information (ODPMI) within the Office of Disability Policy (ODP). [[JR@E] built 2 web front end to
allow visualization of some of the content we collected about the EPM documentsgJg creatively named this application

System for Management Information Legacy Evolution (SMILE). Within SSA’s network, you can access this prototype

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 28

at http://<smile url>/Documents.aspx . Below is a screen shot:

SMILE
System for Management Information

PER——————

Group by: |oc cempenent [=] Callagse 21

8 Export to FoF @) Expont to XIS @B Bwont 105K & Expont to DOCK dB) Expert

* DC Component: Analytics, Review, and Oversight {Count=7,475)

* DC Component: Budget, Finance, and Managament (Counts2,666)
> DC Component: C ications (Count=335)

* DC Component: Hearings Operations (Count=176)

¥ N Camaanant: Uamsmean OQacsneeas (Caoanbes A7aN

®XB] 2!so provided a way to drill down into each section and then view the recreated content:

Office of Financial

Budget, Finance . SSIPT Simple /BI Central Office Folders/DCBFM/DCBFM
g and Managemen‘t Policy and Query 1 = =1 FPA/Development/migrationScript_test
Operations
D | DOCUMENT | PATH | Creation Date | Last Ma
. 1409716 SSIPT Simple Query 1 /BI Central Office Folders/DCEFM/DCBFM FPA/Development/migrationScript_test Oct 18, 2018 Oct 18,
DocumentContent_id ‘ ‘ Querie(s) ‘ Section Name | Section Type | Parent Section | Parent Section Name | Data Source ‘ DataSource Description | DB U:
Show
1223088 Queries DataModel DataModel
tSUMS-MI- SUMS MI 551
Show ORA- Processing Time
1223089 Queries Query Query 77748808 DataModel e P s S el
Phys.oce tmdwrgyl.ba.ssa.gov
Show
1223090 Oueries Results Result F7748813 Query
Query Text Web Focus 1m
SELECT Mthifopt_Sum,Ompt_Clm_Cnt as [Ompt Cim Cnt] , Rptofc_Mv,Rgn_Nm Dtﬂu.f &.CI.[!M’ID = 183; - ENGINE SQLORA SET DEFAULT_CONNECTION DWEWAND SQL
a6 [Ron Nen] , DSPHN_DM,DSPN_TPDESC as [DSPN__TPDCSC] FROM SQLORA PREPARE SQLOUT FOR SELECT DSPN_DM.DSPN_TPDESC, Rptofc_Mv.Rgn_Nm,
[RPTOFC_MV], [DSPR_DM], [MTHLFOPT_SUM] Where Mthifopt_Sum, Gmpt_Cm_Cnt FROM DSPN_DM, RPTOFC_MY, MTHLFOPT_SUM Where
MTHLFOPT_SUM.DSPN_SYS_NUM = DSPH_DM.DSPN_SYS_NUM and MTHLFOPT_SUM,DSPN_SYS_WUM = CSPN_DM,DSPN_SYS_NUM and
MTHLFOPT_SUM.FO_DAY_RANGE_SYS_NUM = MTHLFOPT_SUM FO_DAY_RANGE_SYS_NUM = DAYRANGE_DM.DAY_RANGE_SYS_NUM and
DAYRANGE_DM.DAY_RANGE_SYS_NUM and MTHLIOPT_SUM.OFC_SYS_NUM = MTHLIOPT_SUM.OFC_SYS_NUM = RETOFC_MV.OFC_SYS_NUM and Rptofc_Mv.Rgn_Km IN
RPTQFC_MYV.OFC_SYS_NUM and Rptofc_Mv.Rgn_Nm IN (Atlanta’, "Boston’, {'Atlants’, 'Boston', 'Chicago’) Order by DSPN_DM.OSPN_TPDESC END TABLE FILE SQLOUT
'Chicego’) Ordes by DSPN_DM,DSPN_TPDESC PRINT DSPN_M.DSPH_YMSC Rptofc_Mv.Rgn_Nm Mthifopt_Sum.Ompt_Clm_Cnt END

This application is a C# MVC (model-view-controller) application written in Asp.Net and hosted on a windows web
server within the Office of Systems in the SHE environment. Its data is stored on a SQL Server data hosted on a SQL

Server 2017 server within the Office of Budget, Finance and Management.

This application implements the DevExpress grid and charts that consist of bar, pie, and area charts. There is also a

dashboard that shows a summary of migrated reports.

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 29

AC Docs

2w

OO e
[-
A~ wwad e

DC Migrated and Grand Totals Stacked Bar...

| .

| e

u.u--:

- :. !
U - — - amaciii
e . e s

I

AC Migrated and Grand Totals Stacked Bar Chart

l_-l_llu__ll,“
- - "o i .

-]
LR
T s e

Svoenent

§7.113

Summary of DC Components By Year (Stacked Area)

-
—
s e
)
e

.- -

[-

A setwn A e v B Coven

2 Mesitestand f Seewdne &

mu ao L

A e Seinm e twwgt f oo Mo, gec mapernre L Samven actan) st S
g Ty TVen i b bt Gemme e e e Daager vase e

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018

30

Resource Savings

Using some or all of these methods could result in saving time and staff resources that manually track the migration
process and recreate the documents in another environment. For instance, consider if you used this process to move
over 5,000 query sections. Let us estimate that it takes a user thirty minutes to identify the data needed for the query and
four hours to recreate the query and section on the target environment. This is about 22,500 resource hours. Then if we

give an average labor rate of $80 per hour, the total resource cost is $1,800,000.

It would take one administrator about thirty seconds or a minute to execute the script but we should allow two hours to
configure the script and validate the results. We can also round up the execute time to 15 minutes. Therefore, the cost of
this method is $172 resulting in a cost savings of $1,799,828 from a manual migration process.

SSA has 258,096 query sections in EPM. This is also counting development and test queries so the actual number of

queries that need to be migrated may be much lower.

Conclusion

In this paper, I described technical methods that one can leverage to ease migration from Oracle’s Hyperion Interactive
Report solution also known as EPM within the SSA community. I walked through the EPM database and how meta data
for the documents and sections are stored in the database tables. I provided example SQL queries on how one could
query these tables to recreate the components of the document sections. This includes the table, joins along with the
related display, sort, and filter fields. I also showed how you could partially recreate the result, import and table sections.

I discussed how one could then build on the database information to use restful web services to extract section content

and recreate on a target environment, specifically in this case to WebFocus.

Lastly, I discussed a web application that we developed as a prototype to show how you can use the database to track

and view document information and content.

Appendix

Appendix A — EPM Tables

EPM Database Tables
V8 _BQ_SECTION
V8_CONT_VERSION
V8_CONTAINER
V8_DATA_CONTAINER
V8 DBACCESS
V8_DBCONNECT_PARMS
V8 DBSERVER

V8 DBSERVER DB
V8_DBTYPE
V8_FILE_SYSTEM_URL
V8_FILE_TYPE

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 31

V8_FLAGS
V8_FOLDER
V8_FOLDER_TREE
V8_H_CONSTANT
V8_H_DB_COLUMN
V8_H _DB_DATABASE
V8_H_DB_OWNER
V8_H DB _TABLE
V8_H_DM_COLUMN
V8_H_DM_DIGEST
V8_H_DM_JOIN

V8_H DM _LEAF COL
V8_H_DM_LIMIT _COL
V8_H_DM_META_DEP
V8_H_DM_SECTION
V8_H_DM_TABLE
V8_H DOCUMENT
V8_H_HPSU_COLUMN
V8_H_HPSU_TABLE
V8_H_OBJECT_ID
V8_H_OLAP DIM
V8_H_OLAP_FILTER
V8_H_OLAP MBRSEL
V8_H_OLAP_NAMES
V8_H_OLAP_QUERY
V8_H_OLAP_SECTION
V8_H_QRY_COLUMN
V8_H_QRY_DM_REF
V8_H_QRY_QUERY
V8_H_QRYCOL_DMCOL
V8_H_QRYCOL_RSCOL
V8_H_RS_COLUMN
V8_H_RS_COMP_ITEM
V8_H_RS_LIMIT COL
V8_H_SECTION
V8_H_SECTION_DEP
V8_H_TBL COLUMN
V8_H_WA_DATASRC
V8_OCE
V8_OCE_FILE
V8_QRY_DB_CONN
V8_USER_ATTRIBUTES
V8_USER_VW
V8_USERROLEASSC

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018

32

Appendix B — Code to Create DocumentContent and populate with section data

--create documentcontent table to hold section query parts
CREATE TABLE [dbo] [DocumentContent](
[DocumentContent_id] [int] IDENTITY(1,1) NOT NULL,
[DocumentID] [numeric](19, 0) NULL,
[SectionID] [numeric](19, 0) NULL,
[DataSourceID] [varchar](64) NULL,
[QueryText] [varchar](max) NULL,
[WebFocusText] [varchar](max) NULL,
[TableauText] [varchar](max) NULL,
[SSRSText] [varchar](max) NULL,
[SectionName] [varchar](255) NULL,
[DisplayFields] [varchar](max) NULL,
[Tables] [varchar](max) NULL,
[Joins] [varchar](max) NULL,
[Filters] [varchar](max) NULL,
[ComputedFields] [varchar](max) NULL,
[SortFields] [varchar](max) NULL,
[Section_Already Migrated] [bit] NULL,
[Section_Already Migrated By_Pin] [avarchar](6) NULL,
[Section_Already Migrated By_First] [nvarchar](50) NULL,
[Section_Already Migrated By Last] [nvarchar](50) NULL,
[Section_Already Migrated Date] [date] NULL,
CONSTRAINT [PK_DocumentContent] PRIMARY KEY CLUSTERED
([DocumentContent_id] ASC
JWITH (PAD_INDEX = OFF, STATISTICS NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF,
ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

--populate document content table with document sections, this will insert all sections
insert into [dbo].[DocumentContent] ([DocumentID], [SectionID], [SectionName])
select d document _id, s section_id, s SECTION_NAME from [V8_H_DOCUMENT] d
inner join [V8_H_SECTION] s on d DOCUMENT _ID = s DOCUMENT _ID

where section_id not in (select section_id from [dbo].[DocumentContent])

order by d document_id, s section_id

--update display fields just for one section 77748808 (remove and s. SECTION_ID = 77748808 to update all sections)
Update [dbo].[DocumentContent]

set [DisplayFields] = x DisplayFields

from [dbo].[DocumentContent] dc inner join

(select x1 section_id,

string_agg(cast(concat('[x1 RDBMS_TABLE_NAME,].[x1 RDBMS_COLUMN_NAME,T) as varchar(max)), ', ") as
DisplayFields

from (

select distinct s SECTION_ID, dbt RDBMS_TABLE_NAME, dbc1 RDBMS_COLUMN_NAME

from [V8_H_DOCUMENT] d

inner join [V8_H_SECTION] s on d document_id = s.document_id

inner join [V8_H_DM TABLE] dmt on s SECTION_ID = dmt SECTION_ID

inner join [V8_H_DB_TABLE] dbt on dmt RDBMS_TABLE_ID = dbt RDBMS_TABLE ID

inner join [V8_H_DM_COLUMN] dmcl on dmt DM_TABLE ID =dmcl1 DM_TABLE ID

inner join [V8_H_DB_COLUMN] dbcl on dmcl RDBMS_COLUMN_ID = dbcl RDBMS_COLUMN_ID

where SECTION_TYPE_ID = 4 and s SECTION_ID = 77748808

) as x1

group by x1 SECTION_ID) as x on x section_id = dc sectionID

—update tables just for one section 77748808 (remove and s SECTION_ID = 77748808 to update all sections)
Update [dbo]. [DocumentContent]
set [Tables] = x Tables
from [dbo].[DocumentContent] dc inner join
(
select distinct dmt section_id, string_agg(cast(concat('[,dbt RDBMS_TABLE_NAME,') as varchar(max)), ', ") as Tables

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 33

from [V8_H_DOCUMENT] d

inner join [V8_H_SECTION] s on d document_id = s. document_id

inner join [V8_H_DM_TABLE] dmt on s SECTION_ID = dmt SECTION_ID

inner join [V8_H_DB_TABLE] dbt on dmt RDBMS_TABLE ID = dbt RDBMS_TABLE_ID
where SECTION_TYPE_ID = 4 and s section_id = 77748808

group by dmt section_id) as x on x section_id = dc.section]D

—-update joins just for one section 77748808 (remove and s. SECTION_ID = 77748808 to update all sections)
Update [dbo].[DocumentContent]

set [Joins] = x Joinclause

from [dbo].[DocumentContent] dc inner join

select z section_id,

string_agg(cast(concat(z.tbll,"" z.coll, ' ="', ztbl2,"", z.col2) as varchar(max)),' and ') as Joinclause

from (

select distinct s section_id, dbtl RDBMS_TABLE NAME as tbll, dbcl RDBMS_COLUMN_NAME as coll,
dbt2 RDBMS_TABLE NAME as tbl2, dbc2 RDBMS_COLUMN_NAME as col2

from [V8_H_DOCUMENT] d

inner join [V8_H_SECTION] s on d document_id = s document_id

inner join [V8_H_DM_JOIN] dmj on s SECTION_ID = dmj SECTION_ID

inner join [V8_H_DM_COLUMN] dmcl on dmj FROM_HPSU_COLUMN_ID = dmc1 DM_COLUMN_ID
inner join [V8_H_DB_COLUMN] dbcl on dmcl RDBMS_COLUMN_ID = dbc1 RDBMS_COLUMN_ID
inner join [V8_H_DB_TABLE] dbtl on dbcl RDBMS_TABLE ID = dbtl RDBMS_TABLE_ID

inner join [V8_H_DM_COLUMN] dmc2 on dmj TO_HPSU_COLUMN_ID = dmc2 DM_COLUMN_ID
mner join [V8_H_DB_COLUMN] dbc2 on dmc2 RDBMS_COLUMN_ID = dbc2 RDBMS_COLUMN_ID
inner join [V8_H_DB_TABLE] dbt2 on dbc2 RDBMS_TABLE_ID = dbt2 RDBMS_TABLE_ID

where SECTION_TYPE_ID = 4 and s section_id = 77748808

)asz

group by zSECTION_ID) as x

on x section_id = dc sectionID

--update filters Text

Update [dbo].[DocumentContent]

set [Filters] = x Filters

from [dbo].[DocumentContent] dc inner join

(select s.section_id, cast(string agg(dILIMIT VALUE,' and ') as varchar(max)) as Filters
from [V8_H_DOCUMENT] d

inner join [V8_H_SECTION] s on d document_id = s. document_id

inner join [V8_H_DM_LIMIT COL] dl on dIPARENT_SECTION_ID = s SECTION_ID
where SECTION_TYPE_ID = 4 and s section_id = 77748808

group by s.section_id) as X

on x section_id = dc sectionID

Appendix C — Python Script to upload file to WebFocus using Restful Web API

import pypyodbc
import csv

import sys

import pandas as pd
import requests
import base64

from requests.auth import AuthBase
from requests.auth import HTTPBasicAuth
from requests.auth import HTTPDigestAuth

import xml.etree ElementTree as ET
from xml dom import minidom

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 34

##tdefine the api endpoint and user credentials

devuser = 'sampleuser’

devpw = 'samplepassword'

strbaseur]l = 'http://<webserver name>/ibi_apps/rs/ibfs' #change to actual webfocus URL

wiDevURL = strbaseur] + "?IBIRS_action=signOn&IBIRS_userName="'+ devuser + "&IBIRS_password=" + devpw

#define folder to be migrated
mgfolder = '/BI Central Office Folders/DCBFM/DCBFM FPA /Development/migrationScript_test'

getdocsSQL = "select document_id from [V8_H_DOCUMENT] where path ="' + mgfolder + """

#define function that when called, does all the work needed
def signonWF():

response = requests.post(wfDevURL)

status = response.status_code

if status == 200:
print('successfully connected ', response.status_code)

r = response.text
#r.write('output.xml')
cookie = response.cookies

#print(cookie)
root = ET fromstring(r)

tree = ET.ElementTree(root)
#write to xml file so that minidom can parse it
tree.write("output.xml")

dom = minidom.parse("output.xml")

xmltags = dom.getElementsByTagName('entry')

stoken = [items.attributes|'value'].value for items in xmltags if items.attributes|'key'].value ==
"IBI_CSRF_Token_Value"]

print(‘security token is ', stoken)

mdocs = pd.read_sql(getdocsSQL,con=conn)
d=0
for row in mdocs.values:
docid = row[0]
#identify all query sections that have webfocus content for each document
secsql = "SELECT concat(teplace(d DOCUMENT,' ") "), '_sec_', replace(s.SECTION_NAME,'")' ")) as docTitle, \
[WebFocusText] FROM [dbo].[DocumentContent] dc inner join [VS_H_DOCUMENT] d on dc.DocumentID =
dDOCUMENT_ID \
inner join [V8_H_SECTION] s on dc.SectionlD = s. SECTION_ID where not [WebFocusText| is null and not
WebFocusText = 'NO DATA'\
and s.SECTION_TYPE_ID = 8 and dc.documentid = " + str(docid)

wiData = pd.read_sql(secsql,con=conn)

i=0

for row in wfData.values:

#get report title
description = row][0]
filecontent = row([1]

byteobj = base64.b64encode(filecontent.encode())
fileobj = byteobj.decode("utf-8")
#print(fileobj)

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018 35

reportpath = '/WFC/Repository/BIMigration/uploadtest/' + description + 'fex'
strtoken = stoken|0]

secToken = '&IBIWF_SES_AUTH_TOKEN=' + strtoken

putObj = '<trootObject _jt="IBFSMRODbject" description="" + description + "' type="FexFile"> <content
_jt="IBFSByteContent" char_set="Cp1252">" + fileobj + '</content> </rootObject>'

upURL = strbaseurl + reportpath + "IBIRS_action=put&IBIRS_object="+ putObj + secToken

#print(upURL)

uploadresponse = requests.post(upURL, cookies=cookie)
#file.close

#print(uploadresponse.text)

#increment for next section

i+=1

#increment for next document

d+=1

else:
print('Not able to connect to webfocus, the status code is ' + status)

##connection string to migration database

conn = pypyodbc.connect("DRIVER={SQL Setver};"
"SERVER=<database server>;"
"DATABASE=<database name>;"
"Trusted_Connection=yes;")

cursor = conn.cursor()

#call function to get documents and perform migration
signonWE()

#cleanup database connection
conn.commit()

cursor.close()

conn.close()

print("all done migrating for this folder, please check the webfocus server")

TECHNICAL METHODS TO EASE MIGRATION FROM HYPERION INTERACTIVE REPORTS - DECEMBER 11, 2018

36

